
www.manaraa.com

Old Dominion University

ODU Digital Commons

Mechanical & Aerospace Engineering Theses &
Dissertations

Mechanical & Aerospace Engineering

Fall 2017

Computational Methods for Nonlinear Systems
Analysis With Applications in Mathematics and
Engineering
Geoffrey Kenneth Rose
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

Part of the Aerospace Engineering Commons, Mathematics Commons, and the Mechanical
Engineering Commons

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been

accepted for inclusion in Mechanical & Aerospace Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For

more information, please contact digitalcommons@odu.edu.

Recommended Citation
Rose, Geoffrey K.. "Computational Methods for Nonlinear Systems Analysis With Applications in Mathematics and Engineering"
(2017). Doctor of Philosophy (PhD), dissertation, Mechanical & Aerospace Engineering, Old Dominion University, DOI: 10.25777/
m09c-zj95
https://digitalcommons.odu.edu/mae_etds/31

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/31?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

www.manaraa.com

COMPUTATIONAL METHODS FOR NONLINEAR SYSTEMS ANALYSIS WITH

APPLICATIONS IN MATHEMATICS AND ENGINEERING

by

Geoffrey Kenneth Rose

B.S. May 1995, Old Dominion University

B.S. May 1999, Old Dominion University

M.E. May 2005, Old Dominion University

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

AEROSPACE ENGINEERING

OLD DOMINION UNIVERSITY

December 2017

Approved by:

Brett A. Newman (Co-Chair)

Duc T. Nguyen (Co-Chair)

Julie Z. Hao (Member)

Gene J. Hou (Member)

www.manaraa.com

ABSTRACT

COMPUTATIONAL METHODS FOR NONLINEAR SYSTEMS ANALYSIS WITH

APPLICATIONS IN MATHEMATICS AND ENGINEERING

Geoffrey Kenneth Rose

Old Dominion University, 2017

Co-directors: Dr. Brett A. Newman

 Dr. Duc T. Nguyen

 An investigation into current methods and new approaches for solving systems of

nonlinear equations was performed. Nontraditional methods for implementing arc-length type

solvers were developed in search of a more robust capability for solving general systems of

nonlinear algebraic equations. Processes for construction of parameterized curves representing

the many possible solutions to systems of equations versus finding single or point solutions were

established. A procedure based on these methods was then developed to identify static

equilibrium states for solutions to multi-body-dynamic systems. This methodology provided for

a pictorial of the overall solution to a given system, which demonstrated the possibility of

multiple candidate equilibrium states for which a procedure for selection of the proper state was

proposed. Arc-length solvers were found to identify and more readily trace solution curves as

compared to other solvers making such an approach practical. Comparison of proposed methods

was made to existing methods found in the literature and commercial software with favorable

results. Finally, means for parallel processing of the Jacobian matrix inherent to the arc-length

and other nonlinear solvers were investigated, and an efficient approach for implementation was

identified. Several case studies were performed to substantiate results. Commercial software

was also used in some instances for additional results verification.

www.manaraa.com

iii

ACKNOWLEDGMENTS

 This work was funded by the Advanced Degree Program at NASA Langley Research

Center.

www.manaraa.com

iv

NOMENCLATURE

 𝒇(𝒖) System of nonlinear equations 𝑭 Reference vector 𝑖 Iteration count 𝑰 Identity matrix 𝑰𝑪𝑴 Inertia matrix 𝑱 or 𝑲 Jacobian or tangent stiffness of 𝒇(𝒖) 𝑴 Mass matrix 𝑹 Residual vector 𝒖 Vector of unknown variables 𝛥 Incremental change with respect to 𝜆 or 𝒖 𝜆 Scaling parameter 𝜦 Vector of Lagrange multipliers 𝜱 Vector of algebraic constraints

www.manaraa.com

v

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES ...x

Chapter

1. INTRODUCTION ...1

1.1 BACKGROUND MOTIVATION ..1

1.2 RESEARCH PROBLEM AND OBJECTIVES ...3

1.3 DISSERTATION OUTLINE ...5

2. LITERATURE REVIEW ..8

2.1 SOLVER OVERVIEW ..8

2.2 PARALLEL COMPUTING ...17

2.3 COMMERCIAL SOFTWARE ...19

3. SOLVING GENERAL SYSTEMS OF EQUATIONS ...21

3.1 INTRODUCTION ..21

3.2 SOLVER THEORY AND BACKGROUND ...23

3.3 SOLVER SUITE DEVELOPMENT AND IMPLEMENTATION28

3.4 DEMONSTRATION PROBLEMS ..29

3.5 CONCLUSIONS ..35

4. EQUILIBRIUM FOR MULTI-BODY-DYNAMIC SYSTEMS ..37

4.1 INTRODUCTION ..37

4.2 THEORY AND METHODS FOR PARAMETERIZED NEWTON-RAPHSON41

4.2.1 STEPWISE PROCEDURE FOR PARAMETERIZED NEWTON-RAPHSON ...42

4.3 THEORY AND METHODS FOR TWO VARIATIONS OF ARC-LENGTH43

www.manaraa.com

vi

Page

4.3.1 ARC-LENGTH METHOD USING NORMAL ITERATION PATH45

4.3.1.1 STEPWISE PROCEDURE FOR ARC-LENGTH METHOD ON

NORMAL PATH ..50

4.3.2 ARC-LENGTH METHOD USING CIRCULAR ITERATION PATH51

4.3.2.1 STEPWISE PROCEDURE FOR ARC-LENGTH METHOD ON

CIRCULAR PATH ...54

4.4 METHODS FOR DERIVING GOVERNING EQUATIONS ...56

4.5 SINGLE-DEGREE-OF-FREEDOM PENDULUM ...60

4.5.1 RESULTS FOR SINGLE-DEGREE-OF-FREEDOM PENDULUM62

4.6 SPRING SUPPORTED ARCH ..68

4.6.1 RESULTS FOR COLLAPSING ARCH ..74

4.6.2 RESULTS FOR NON-COLLAPSING ARCH ..82

4.7 PROPOSED PROCEDURE FOR IDENTIFYING STATIC EQUILIBRIUM90

4.8 CONCLUSIONS ..92

5. PARALLEL PROCESSING OF THE JACOBIAN ..94

5.1 INTRODUCTION ..94

5.2 METHODS FOR COMPUTING THE JACOBIAN ..97

5.3 EQUATION THEORY AND BACKGROUND ..101

5.4 SERIAL CODE IMPLEMENTATION ..104

5.5 PARALLEL CODE IMPLEMENTATION ...107

5.6 CODE TIMING RESULTS ..109

5.7 CONCLUSIONS ..113

6. SPACECRAFT RELATIVE ORBIT DETERMINATION CASE STUDY115

6.1 INTRODUCTION ..115

6.2 PLANAR ORBIT ...118

6.3 SPACE ORBIT ...133

6.4 CONCLUSIONS ..142

www.manaraa.com

vii

Page

7. CONCLUSIONS AND FURTHER RESEARCH ...144

BIBLIOGRAPHY ..146

APPENDICES

A. MATLAB CODE FOR NEWTON-RAPHSON METHOD..151

B. MATLAB CODE FOR ARC-LENGTH METHODS ...152

C. MATLAB CODE FOR SOLVING A NONLINEAR SYSTEM154

D. MATLAB CODE FOR DEFINING A NONLINEAR SYSTEM156

E. MATLAB CODE FOR PARALLEL JACOBIAN COMPUTATION157

F. COPYRIGHTS ..158

VITA ..159

www.manaraa.com

viii

LIST OF TABLES

Table Page

1. Pendulum DAE eigenvalue quantity ..66

2. Pendulum ODE eigenvalues, Re ± Im (Hz) ...67

3. Collapsing arch DAE eigenvalue quantity ...79

4. Candidate equilibrium states for collapsing arch ...79

5. Strain energy (𝑁 ∙ 𝑚) for collapsing arch ..79

6. Difference ratios with respect to state I for collapsing arch ..80

7. Collapsing arch ODE eigenvalues, Re ± Im (Hz) ..82

8. Non-collapsing arch DAE eigenvalue quantity ...86

9. Candidate equilibrium states for non-collapsing arch ...87

10. Strain energy (𝑁 ∙ 𝑚) for non-collapsing arch ..87

11. Difference ratios with respect to state I for non-collapsing arch ...87

12. Non-collapsing arch ODE eigenvalues, Re ± Im (Hz) ..90

13. Solution times using sparse and dense Jacobian (sec) ..107

14. Calculation of full Jacobian, dense composite format (sec) ..112

15. Calculation of full Jacobian, dense matrix format (sec) ..112

16. Calculation of block Jacobian, sparse matrix format (sec) ..113

17. Candidate states, curve 1..122

18. Relative specific energy (𝑘𝑚2/𝑠2), curve 1 ...122

19. Candidate states, curve 2..124

20. Relative specific energy (𝑘𝑚2/𝑠2), curve 2 ...124

www.manaraa.com

ix

Table Page

21. Candidate states ...137

22. Relative specific energy (𝑘𝑚2/𝑠2) ...137

www.manaraa.com

x

LIST OF FIGURES

Figure Page

1. Equilibrium path exhibiting limit points and snap-through ...23

2. Newton-Raphson method for single-degree-of-freedom ...25

3. Arc-length method for single-degree-of-freedom ..27

4. Program flowchart ...28

5. Intersecting surfaces (2 DOF) ..31

6. Solutions for 𝜆 versus 𝑢1 (3 DOF) ...33

7. Solutions for 𝜆 versus 𝑢2 (11 DOF) ...35

8. Calculation of ∆𝒖0 and ∆𝜆0 for single-degree-of-freedom system ...46

9. Points on normal iteration path for single-degree-of-freedom system48

10. Components of ∆𝒖𝑖 for single-degree-of-freedom system ..49

11. Points on circular iteration path for single-degree-of-freedom system56

12. Single-degree-of-freedom pendulum ...61

13. Solution curves for single-degree-of-freedom pendulum ..65

14. Spring supported arch ..69

15. Dynamic simulation of collapsing arch ...72

16. Dynamic simulation of non-collapsing arch ..72

17. Solution curve for bar one x position, 𝑘𝑠 = 17.5 𝑁/𝑚 ...76

18. Solution curve for bar one y position, 𝑘𝑠 = 17.5 𝑁/𝑚 ...76

19. Solution curve for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 ..77

20. Additional solution curves for bar one x position, 𝑘𝑠 = 17.5 𝑁/𝑚 ..77

www.manaraa.com

xi

Figure Page

21. Additional solution curves for bar one y position, 𝑘𝑠 = 17.5 𝑁/𝑚 ..78

22. Additional solution curves for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 ...78

23. ODE static solution curve for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 ..81

24. Total solution curve for bar one x position, 𝑘𝑠 = 87.6 𝑁/𝑚 ..83

25. Partial solution curve for bar one x position, 𝑘𝑠 = 87.6 𝑁/𝑚 ..84

26. Total solution curve for bar one y position, 𝑘𝑠 = 87.6 𝑁/𝑚 ..84

27. Partial solution curve for bar one y position, 𝑘𝑠 = 87.6 𝑁/𝑚 ..85

28. Total solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 ...85

29. Partial solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 ...86

30. ODE static solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 ..90

31. Percent error vs. parameter ℎ for given function 𝑓 ..99

32. Constraint force vs. time for double link system ...103

33. Serial Jacobian computation using MATLAB ...105

34. Parallel Jacobian computation using MATLAB ..109

35. Solution curve 1 for deputy 𝑥0 ...120

36. Solution curve 1 for deputy 𝑦0 ...120

37. Solution curve 1 for deputy �̇�0 ...121

38. Solution curve 1 for deputy �̇�0 ...121

39. Solution curve 2 for deputy 𝑥0 ...122

40. Solution curve 2 for deputy 𝑦0 ...123

41. Solution curve 2 for deputy �̇�0 ...123

42. Solution curve 2 for deputy �̇�0 ...124

www.manaraa.com

xii

Figure Page

43. Extended solution curve 1 for deputy 𝑥0 ...125

44. Extended solution curve 1 for deputy 𝑦0 ...126

45. Extended solution curve 1 for deputy �̇�0 ...126

46. Extended solution curve 1 for deputy �̇�0 ...127

47. Extended solution curve 2 for deputy 𝑥0 ...127

48. Extended solution curve 2 for deputy 𝑦0 ...128

49. Extended solution curve 2 for deputy �̇�0 ...128

50. Extended solution curve 2 for deputy �̇�0 ...129

51. Solution curve 1 difference ratio for positive 𝜆 ...130

52. Solution curve 1 difference ratio for negative 𝜆 ..130

53. Solution curve 2 difference ratio for positive 𝜆 ...131

54. Solution curve 2 difference ratio for negative 𝜆 ..131

55. Solution curve for deputy 𝑥0 ..134

56. Solution curve for deputy 𝑦0 ..134

57. Solution curve for deputy 𝑧0 ..135

58. Solution curve for deputy �̇�0 ..135

59. Solution curve for deputy �̇�0 ..136

60. Solution curve for deputy �̇�0 ..136

61. Extended solution curve for deputy 𝑥0 ..138

62. Extended solution curve for deputy 𝑦0 ..138

63. Extended solution curve for deputy 𝑧0 ..139

64. Extended solution curve for deputy �̇�0 ..139

www.manaraa.com

xiii

Figure Page

65. Extended solution curve for deputy �̇�0 ..140

66. Extended solution curve for deputy �̇�0 ..140

67. Difference ratio for positive 𝜆 ..141

68. Difference ratio for negative 𝜆 ...142

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND MOTIVATION

 Solving systems of nonlinear equations lies at the core of many finite element analysis

(FEA) and multi-body-dynamics (MBD) software codes. Solution strategies for equilibrium

typically involve solving these equations iteratively through linearization or Taylor series

expansion using some variant of a Newton-Raphson solver [1-6]. This technique requires

computation of derivatives for the Jacobian or tangent stiffness matrix for construction of a local

linear model about a known operating point or solution. Common variations available for this

type solver include full [1-3], modified [1-3], quasi-Newton [1-3,7], inexact-Newton [8], tensor

[7], and arc-length [1-3]. Full methods update the Jacobian at every iteration whereas modified

methods hold the Jacobian constant or minimize updates to reduce the associated computational

cost. This simplification results in increased iterations required for convergence or finding a

solution to the nonlinear system but does so in a cheaper sense which typically increases solver

speed or efficiency. Quasi-Newton methods, on the other hand, update the Jacobian using

approximations and typically reduce iterations as compared to the modified method but can have

issues with convergence as the Jacobian contains error. Line search methods [7] can be included

to help with convergence but come with added cost. Inexact methods utilize an iterative versus a

direct solver for the linearized system that avoids factorizing the Jacobian during iterations. This

alteration can help with solver speed as systems become large. Tensor methods use an extended

www.manaraa.com

2

form of a Taylor series expansion and supplement first-order linear models with approximations

for second-order derivatives in an attempt to improve the local model. Iterations for

convergence can be reduced, but this adds to computational expense per iteration. Arc-length

solvers include an additional constraint equation with the Newton-Raphson method and can be

more robust due to an additional unknown parameter used during search for a solution. They

may also be referred to as continuation or path following methods due to their natural ability to

follow an equilibrium path with changes in sign for slope or direction. Updates to the Jacobian

in this case can be made at every iteration for a standard approach or using approximations for a

quasi-Newton method. The Jacobian can be also be held constant or updated periodically for a

modified approach.

Review of documentation for popular FEA [9-11] and MBD [12,13] commercial software

codes revealed that the Newton-Raphson method with selective updating of the Jacobian is the

standard solver for use in nonlinear static FEA and static equilibrium for MBD. Other FEA

solver options included quasi-Newton and arc-length. Tensor methods were not identified as

being used in FEA solvers but were found in a MBD code [12] as a solver option for static

equilibrium. Arc-length solvers were used in FEA codes for post-buckling analysis of structures

that “snap” into new geometric configurations from sudden changes in force-displacement

relations, but these solvers were not being used otherwise. Trust-region type solvers [7,14]

developed primarily for numerical optimization were found implemented as an advanced

alternative to Newton-Raphson type solvers in the event of convergence failure in MBD [12,13]

codes in search of static equilibrium. These type solvers were not found being implemented for

general use in FEA, but scientific computing software MATLAB [15] included a version of this

type solver specifically for solving general systems of nonlinear equations while not including

www.manaraa.com

3

any versions of Newton-Raphson. Trust-region solvers are more robust than most Newton-

Raphson type solvers as they are able to handle cases where the Jacobian becomes singular.

Singularity typically occurs at limit points in an analysis where any of the independent variables

go from increasing in magnitude to decreasing or vice versa. This behavior can cause Newton-

Raphson type solvers to fail due to an ill conditioned Jacobian or search for solutions in a

direction away from the equilibrium path. Arc-length solvers are unique as they are able to

follow equilibrium paths by specifying iteration path slope which facilitates stepping over limit

points to avoid this issue.

1.2 RESEARCH PROBLEM AND OBJECTIVES

Based on identification of solver types and use, arc-length type solvers were chosen for

investigation and comparison to state-of-the-art solvers and methods being used in commercial

software. Primary use of these type solvers for post-buckling structural analysis in FEA left

other areas open to investigation for possible research contributions to solving general systems of

nonlinear algebraic equations. The problem of finding static equilibrium was also identified as

particularly challenging from developers of MBD codes [12,13] such that arc-length solvers

were used to further develop solution methods to this specific class of problem as well.

Comparisons of proposed methods using arc-length solvers to current practices were made

through programming of a nonlinear solver suite using MATLAB and running a series of

specific problems or case studies. Functions or subroutines for previously mentioned solver

types were developed with exception to trust-region. The trust-region type solver inherent to the

MATLAB software was used in this case. Several general and MBD based nonlinear systems

www.manaraa.com

4

were chosen for evaluation with particular attention paid to robustness or whether specific solver

types could identify a solution or maintain track of curves representing solutions to given

systems. Case studies for identifying roots in nonlinear systems used to determine initial

conditions for relative orbits for spacecraft were also performed. Path following solver strategies

based on arc-length solvers were found to be more robust as compared to previous work where

additional roots or solutions to the nonlinear systems were found.

The final part of the investigation involved identifying a more efficient means of

numerically computing the Jacobian matrix through parallel processing. The Jacobian is a

matrix of first-order partial derivatives inherent to linearization and nonlinear solver algorithms

based on this principle. Computation and factorization of the matrix is performed during solver

iterations resulting in a timing or speed bottleneck where increased solver efficiency is obtained

through decreasing such operations. Performance gains through parallel processing typically

become more apparent as systems increase in size; however, lower bounds to the size of systems

to which this first becomes beneficial may not necessarily be known. A system of

interconnected links was used as a benchmark problem to identify such lower bounds due to

specific reference in a MBD user manual [12]. This particular system was identified as not

exhibiting parallel processing performance gains for a given minimum scale and this scale was

used to set a goal for parallel code speedup. Methods were then developed in MATLAB that

demonstrated initial performance gains at even smaller scales. Results for a range of system

sizes and processing methods were quantified and compared to non-parallel or serial processing

results. The timing study was completed on a multi-core shared memory personal computer

(PC) using MATLAB which included underlying parallel operations. These hidden operations

www.manaraa.com

5

added to the challenge of achieving code speedup as the underlying parallel operations left little

room for improvement.

The primary objective of this research effort was to identify state-of-the-art practices for

solving systems of nonlinear equations and develop new methodologies for improvement of both

robustness and efficiency. Focus of the study remained on developing solution strategies for

systems of nonlinear algebraic equations and nonlinear differential and algebraic equations

(DAEs) with regard to static equilibrium. User documentation of popular commercial software

codes was included as part of a literature review for identifying what is considered to be state-of-

the-art. Several sample problems or case studies were developed for comparison of proposed

solver strategies to existing methods in terms of robustness or capability to solve a given

problem and efficiency where the primary metric was solve time. Case studies for robustness

involved finding solution to general mathematical systems of nonlinear algebraic equations and

static equilibrium for nonlinear MBD systems. Efficiency was addressed through developing a

method of parallel processing of the Jacobian matrix that demonstrated a timing speedup as

compared to a serial version.

1.3 DISSERTATION OUTLINE

Chapter 2 contains an overview of literature used to support the study. Popular

commercial software relevant to systems of nonlinear equations was identified and user

documentation was consulted to identify solution procedures. These procedures are assumed to

be state-of-the-art based on the assumption that developers strive to produce software that

maximizes robustness, efficiency, or performance in general.

www.manaraa.com

6

Chapter 3 covers use of the arc-length method for solving general systems of nonlinear

equations and compares the solver in terms of robustness to other Newton-Raphson based

solvers and MATLAB’s fsolve [15] routine. Accomplished work in this area has been previously

published and the reference has been included in the copyright notice in the Appendix. The

metrics used for robustness are the solvers ability to identify a solution from an initial guess and

ability to maintain track of a series of solutions along a path once a starting point was found.

Chapter 4 encompasses work in Chapter 3 but is specific to nonlinear equations for MBD

systems and the search for static equilibrium. Accomplished work may become subject to

copyright and reference has been included in the copyright notice in the Appendix. Candidate

equilibrium configurations for sample systems were identified through plotting of the solution

with respect to given independent variables. A procedure for selecting the proper equilibrium

configuration based on energy and the use of solution curves is proposed. This procedure was

shown to provide for a more comprehensive and systematic approach in identifying true

equilibrium as compared to methods currently being used in commercial MBD software.

Chapter 5 addresses methods of parallel processing for computation of the Jacobian

matrix inherent to Newton-Raphson based solvers. Accomplished work has been previously

published and reference has been included in the copyright notice in the Appendix. MATLAB

was used to complete this task for consistency with the previously developed nonlinear solver

suite. A specific system of interconnected links was identified in MSC ADAMS user

documentation [12] as a performance challenge by which to first demonstrate parallel processing

speedup for a given minimum system size. The objective of achieving speedup of computer

code was met and expected performance gains for MATLAB based applications running on

shared memory personal computers were quantified.

www.manaraa.com

7

Chapter 6 contains a case study addressing application of an arc-length method for

solving spacecraft relative orbit determination equation sets. Path following of solution curves

was demonstrated to be more robust in the identification of roots used for orbit initial conditions

as compared to standard solver techniques. Identification of all roots is critical for this particular

application as only one root represents initial conditions for an orbit of non-zero velocity and

minimum energy.

Chapter 7 summarizes conclusions and findings. Recommended further research is

identified including the need for implementing arc-length based solver schemes in a more

automated manner for practical use.

www.manaraa.com

8

CHAPTER 2

LITERATURE REVIEW

 Solution to nonlinear systems of equations lies at the core of many computer software

codes used in science and engineering. Such systems can often pose a significant challenge for

finding and identifying solutions using existing mathematical tools. Review of nonlinear

equation solver theory, parallel computing, and current software implementations was performed

to help identify strengths and weaknesses of various solver strategies being used. Based on this

review, solution procedures with possible areas for improvement were identified and used to

define research objectives. This identification included evaluation and comparison of solver

strategies used for general systems of nonlinear equations, strategies for obtaining equilibrium in

MBD systems, and parallel computation of the Jacobian matrix identified as a speed bottleneck

on shared memory personal computers. Work is documented in Chapters 3 through 6 with

sample versions of MATLAB computer code contained in the appendix.

2.1 SOLVER OVERVIEW

 The Newton-Raphson method and closely related techniques have been identified by

Bathe [1] as the most frequently used iteration schemes for solution to nonlinear finite element

based equations. Further stated is that the Newton-Raphson method represents the primary

solution scheme for FEA. The major computational cost per iteration was identified as

calculation and factorization of the tangent stiffness or Jacobian matrix and that the use of a

www.manaraa.com

9

modified Newton-Raphson method can be effective in reducing this cost. A method that

computes and factorizes the Jacobian once using a system’s initial configuration and holds it

constant during iterations is referred to as the “initial stress” method. Methods that update the

Jacobian periodically during iterations are referred to as “modified” methods. Similar

terminology is used in a text by de Borst et al. [3]. Computational cost associated with the

Jacobian is noted similar to Bathe and it is assumed that limited variation of the Jacobian

between subsequent iterations is what makes modified approaches practical. The slowing down

of convergence or increase in iterations for the modified methods is noted as acceptable as it is

offset by gains or performance in computation time. Cook et al. [2] state that computational cost

is usually lowest by selectively updating the Jacobian. The initial stress method is here presented

as a form of the modified Newton-Raphson method versus a unique procedure. Similar to Bathe,

potential issues with convergence are identified due to lack of Jacobian updates during iterations.

 Shabana [5] provides for several solution strategies that can be used for solving systems

of nonlinear DAEs found in MBD codes. Solution strategies, whether static, kinematic, or

dynamic, all involve use of the Newton-Raphson method. While systems of DAEs could be

solved using only the Newton-Raphson method for a dynamic solution procedure, Shabana

proposes using this for the constraint equations only followed by a direct numerical integration

scheme for the dynamics portion. Shabana covers a variety of these direct integration procedures

and processes that transform equations to a state space representation for use with these type

solvers [4]. This study, however, will not cover dynamic solvers in detail; rather, focus will

remain on solution strategies for identifying static equilibrium. Shabana [4] notes that it is

desirable in many applications to obtain a static equilibrium configuration prior to a dynamic

simulation. This desirability is due to differences between the as modeled and equilibrium

www.manaraa.com

10

configurations that are likely to occur. Difficulty with obtaining solutions for static equilibrium

are also addressed when Lagrange multipliers or constraint forces are included as unknowns. In

his proposed algorithm for solving DAEs, he states that initial conditions must provide a good

approximation of the exact initial configuration. This approximation would of course effect

convergence and probability of finding a solution for any of the Newton-Raphson based solvers.

Specific types or classes of Newton-Raphson methods are not discussed and reference to arc-

length, continuation, or path following methods for static equilibrium is not made. This

exclusion is also the case for solver strategies covered by Bauchau [6]. Mention of a modified

Newton-Raphson method is discussed in reference to the possibility of considerable

computational savings as compared to the standard or full method, but reference to other static

type solvers for nonlinear equations is not made. Similar to Shabana, Bauchau also mentions

carrying out a static equilibrium analysis prior to start of a dynamic simulation.

 Quasi-Newton methods are an alternative to the full and modified forms of the Newton-

Raphson method. These methods use an approximation for the Jacobian matrix by calculating it,

or more specifically its inverse, in an inexact sense. Cook et al. [2] refer to the approximated

Jacobian as the secant stiffness matrix versus tangent stiffness matrix as computation involves

use of a previously known solution or point on an equilibrium path versus a single tangent point

only. One of the most popular methods cited by de Borst et al. [3] is the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [16-19] update. Caution is advised when using this method as

convergence behavior deteriorates as compared to a Newton-Raphson method. Reports of erratic

behavior and lack of numerical stability were also identified resulting in a decrease in popularity

of quasi-Newton methods in more recent years. Although several quasi-Newton type methods

exist, Bathe [1] reports that the BFGS method appears to be the most effective. Issues with

www.manaraa.com

11

numerical stability are addressed through incorporation of a line search strategy that becomes an

integral part of the overall solution procedure, but computational cost is increased as line

searches scale candidate solutions in an iterative fashion in an attempt for convergence or further

minimization of error. A detailed derivation of the BFGS method including a computational

example can be found in a text by Komzsik [20].

 Tensor methods use an extended form of a Taylor series expansion and augment first-

order linear models with an approximation for the second-order term. Schnabel and Frank [21]

introduced them as a new class of methods designed specifically for solving systems of nonlinear

equations. They are intended to improve upon Newton-Rapson based methods and handle cases

where the Jacobian is singular or ill conditioned. The second-order term, often called the

Hessian, is formed by interpolating function values from previous iterations similar to what is

done for quasi-Newton methods. According to Bouaricha and Schnabel [22], use of one or two

past iteration points is sufficient. One of the major contributions of tensor methods according to

Bouaricha [23] has been its greater robustness, and experimental results show that tensor

methods consistently solve a wider range of problems as compared to the Newton-Raphson

based methods. Most recent advancements for tensor methods appear to have been completed by

Bader [24]. Focus is on large-scale systems and methods are referred to as tensor-Krylov similar

to terminology used by Bouaricha [23] in an earlier publication. Krylov refers to a class of linear

solvers named after Russian mathematician Aleksey Krylov [25]. Krylov solvers are typically

used for large-scale systems as they avoid matrix factorization and solve linear systems

iteratively to save on computational cost. Two of the most popular Krylov solvers are conjugate

gradient (CG) [26] for use with symmetric matrices and generalized minimal residual (GMRES)

[27] for use with nonsymmetric matrices.

www.manaraa.com

12

 Krylov solvers used in combination with the Newton-Raphson method lead to a specific

class of solvers referred to as inexact-Newton methods. The term inexact is used as a solution to

the linearized system performed during iterations of the Newton-Raphson method contains its

own convergence criteria and therefore has some error. A detailed discussion on inexact-Newton

methods can be found in a text by Kelly [8]; it also includes separate chapters on CG and

GMRES methods. Solver naming convention is based on the type of linear solver being used

such as Newton-CG or Newton-GMRES. A more general naming convention would be Newton-

Krylov, which encompasses all Newton-based nonlinear solvers using Krylov subspace methods.

Such naming convention can also be applied to tensor methods as well. According to GMRES

developers Saad and Schultz [27], “One of the most effective iterative methods for solving large

sparse symmetric positive definite linear systems of equations is a combination of the conjugate

gradient method with some preconditioning technique.” Preconditioning is used to reduce the

condition number of a matrix to improve performance of iterations thereby helping to minimize

the number of computations required for convergence. A detailed overview of preconditioning

techniques and Krylov subspace methods can be found in a text by Saad [28].

 Arc-length methods supplement the Newton-Raphson method with an additional

constraint equation to define a path for iterations. The primary strength of arc-length methods is

their ability to solve past limit points when traversing a solution curve or equilibrium path that

changes slope or direction. Several variations of the arc-length method exist and naming

convention is typically based on the type of constraint being used. Early development of the

method is credited to Riks [29] and Wempner [30] where iterations are constrained to a normal

plane. Crisfield [31] later proposed use of a circular path and Ramm [32] used a linearized

version of Crisfield’s constraint for an updated normal plane that provided for a “faceted” path

www.manaraa.com

13

that mimics a curve. In later publications by Crisfield [33,34], the term cylindrical was used to

define a path where one of the terms in the circular or spherical constraint was set to zero. This

implementation was, in fact, the method used in his original publication [31] which is why the

phrase “proposed circular” or “proposed spherical” path is often used. An elliptical path is

presented in course notes by Felippa [35] where scalar coefficients are used as multipliers for

terms in the spherical constraint equation. By setting these terms to one, the spherical path is

recovered, whereas other values form an elliptical path. The prefix “hyper” is also appended to

naming convention to reinforce use for multi-degree-of-freedom systems versus single-degree-

of-freedom only. Felippa refers to both global and local hyperelliptic control options for

defining the iteration path depending on the frame of reference being used.

Bathe and Dvorkin [36] provided for an additional constraint option by including an

energy or work based equation in combination with a spherical constraint. The possibility of

combining the full Newton-Raphson, modified Newton-Raphson, quasi-Newton, and line search

methods in combination with arc-length constraints was also discussed. The solution scheme

was acknowledged as being particularly effective near limit or collapse points with an overall

objective of tracing the complete equilibrium path in an automated manner. This concept is

relevant to numerical path following or continuation methods in mathematics. De Borst et al. [3]

uses the phrase path following method as a similar descriptor for the arc-length method;

however, connection to such theory in mathematics is not explicitly made. Previous texts by

Crisfield [33,34], on which the later text by de Borst et al. is based, cover arc-length methods in

greater detail and make the connection between these methods and related continuation methods

or techniques in mathematics. This continuation terminology is used repeatedly in Volume 1

[33] and later replaced by path following in Volume 2 [34].

www.manaraa.com

14

An overview of numerical path following or continuation methods presented from a

mathematical perspective can be found in texts by Allgower and Georg [37,38]. Reference to

works by authors who refined such procedures for FEA is included in the bibliography of the

earlier publication, but specifics with regard to these references are not included in the text or

later publications showing a general disconnect between the two vocations. Terminology varies

slightly from what is used for FEA as arc-length methods are referred to as predictor-corrector or

pseudo arc-length continuation methods. The term pseudo is best understood with respect to a

single-degree-of-freedom system where a tangent line is used to approximate the length of an arc

or curve. The point at the end of the tangent line is called a predictor for the next point on the

curve, and Newton-Raphson iterations are then used as correctors until an intersection with the

curve or a solution is found. The basic concept behind this principle is that a series of tangent

lines or approximate arc-lengths serve as an ideal method for parameterization of a given curve.

This parameterization is what enables tracking of the curve around limit or turning points where

the Newton-Rapson method parameterized using only a fixed scalar for non-zero solutions would

fail. The magnitude of the arc-length parameter is scaled in practice according to Bathe [1]

based on the history of iterations between solution steps or previously found points on the

solution curve. This magnitude could be large when the behavior of a solution curve is nearly

linear and become small when behavior becomes nonlinear such as near a turning point.

Crisfield [33] provides for a simple scaling equation using the ratio of desired to actual iterations

required for convergence and refers to such an approach as required for a robust continuation

method. He also warns that despite one’s best attempt at automation, user intervention is often

required and methods for restarting of the solver should be made available.

www.manaraa.com

15

Felippa [35] summarizes the use of continuation or path following methods used in

nonlinear structural mechanics or FEA as not just being a possible game but the only game. He

refers to the engineering flavor of continuation methods as being less difficult to implement as

those presented in mathematics where the objective of finding the roots in a nonlinear system

analysis is replaced by following the physics. He comments on the lack of cross-fertilization

between the math and engineering communities and notes a 1978 publication by H. B. Keller

titled, “Global homotopies and Newton methods,” that claims invention of the arc-length method

years after Riks and Wempner first published it. Felippa opts for the predictor-corrector

terminology for explaining the various forms of arc-length methods but notes that such

terminology is far from standardized. Final comments in his course notes state that the last

major advancement in arc-length methods was made by Riks and Wempner in the late 1960’s

and early 1970’s and was later improved by Crisfield in the 1980’s. Another significant

improvement mentioned by de Borst et al. [3] is the partitioned versus direct solution procedure

used to maintain symmetry and the banded nature of the Jacobian or tangent stiffness matrix.

This procedure was used by Crisfield [31] and Ramm [32] and breaks the vector of unknown

variables in the nonlinear system into two components for purpose of solving equations in an

efficient manner.

Conn et al. [14] discuss the use of trust-region methods for solving systems of nonlinear

equations although these methods are more commonly used for purpose of numerical

optimization. Systems of nonlinear equations are used to construct what is called an objective

function with a goal of finding a solution that minimizes this function. A model that

approximates the objective function is formed and iterations are performed to continually update

candidate solutions until convergence is achieved. Unlike the Newton-Raphson method, which

www.manaraa.com

16

uses a linear model, a quadratic model that incorporates use of the Hessian or matrix of second-

order partial derivatives from a Taylor series expansion is used. This fidelity increment adds a

degree of robustness to the solver as convergence at limit or critical points that exhibit zero slope

or a singular Jacobian can be achieved. However, warning is given as the solver may converge

to a minimum and not a root or zero for a solution to the nonlinear equations. Nocedal and

Wright [7] also include use of trust-region methods as a solver option for nonlinear equations.

The phrase objective function is replaced by merit function to better differentiate between

solvers used for optimization versus nonlinear equations. Merit functions are defined as scalar

functions that indicate whether progress is being made towards finding a root. The most widely

used merit function was identified as using the sum of squares of the nonlinear equations during

iterations. Roots can be distinguished from minimums as they equate equations to all zeros

versus some positive value. The most widely used quadratic model for solving nonlinear

equations was identified as one that uses an approximate Hessian obtained by multiplying the

transpose of the Jacobian by itself. Computation of the exact Hessian would be quite expensive

and approximating it as a function of the Jacobian helps to reduce this cost. Crisfield [33]

includes commentary on limit or critical points for continuation methods using arc-length

solvers. He states that from an engineering viewpoint, the precise computation of limit points

does not seem to be of practical importance. Although arc-length solvers can fail at limit points

due to singularity of the Jacobian, he states that this was not found to be a significant problem as

one appears never to arrive precisely at a limit point. There is always the option to reduce the

arc-length parameter and restart the solver as well. Authors of FEA and MBD texts [1-6] did not

include use of trust-region methods for solving nonlinear equations, likely due to their higher

www.manaraa.com

17

computational expense as compared to Newton-Raphson methods and low probability that a root

would also correspond to a limit point in an equilibrium solution.

2.2 PARALLEL COMPUTING

 Barney [39], who authored an online tutorial in parallel computing for the Lawrence

Livermore National Laboratory, defines parallel computing in the simplest sense as the

simultaneous use of multiple computer resources to solve a computational problem. This process

differs from more traditional serial computing where a problem is broken into a discrete series of

instructions that are processed in order one at a time. Primary reasons cited for use of parallel

computing are to save time, money or both, to solve larger, more complex problems, provide

concurrency, to take advantage of non-local resources, and to make better use of underlying

parallel hardware. Barney states that virtually all stand-alone computers today are parallel from

a hardware perspective and that trends over the past 20+ years in network speed, distributed

systems, and multi-processor computer architectures show that parallelism is the future of

computing. Several programming models are covered in the tutorial where a few of the popular

standards include OpenMP [40] where several central processor units (CPUs) share memory,

message passing interface (MPI) [41] where memory is distributed among multiple CPUs, and

Single Program Multiple Data (SPMD) [42] which can be a hybrid combination of both. He also

notes an increasingly popular hybrid model that incorporates graphics processor units (GPUs) in

addition to CPUs for parallel processing.

 The primary intent of parallel programing cited by Barney is to decrease execution wall

clock time. One of the simplest and most widely used metrics for parallel performance is

www.manaraa.com

18

observed speedup being defined as serial wall clock time divided by parallel wall clock time.

Caution is given regarding performance of short running parallel programs as there can be a

decrease in performance due to issues such as task creation and communications overhead. A

noted inhibitor to parallelism is input-output timing for the transfer of data. In regards to CPU

and available memory, a table is included in the tutorial showing a decrease in speed for various

memory types with respect to the CPU register with a baseline communication time of one

nanosecond. Cache memory is shown to be 10X slower, main memory 100X slower, and

magnetic disk memory 100,000,000X slower showing dramatic reduction in speed for memory

locations further away from the cache. An older yet still relevant text on parallel computing by

Grama et al. [43] makes note of impressive gains in CPU performance over a given decade while

the ability of computer memory to feed data to processors has not kept up with their execution

rate. This timing gap between processor and memory has led to a significant performance

bottleneck diluting overall parallel performance.

 Matloff [44], a University of California at Davis professor, maintains an open-source text

available online for parallel programming and lists several issues that can effect or inhibit

performance. He identifies the most central performance issue as being load balancing where the

objective is to keep all processors as busy as much as possible and that communication

considerations largely drive this issue. Also noted is that the phrase “embarrassingly parallel”

has evolved over recent years from referring to parallel code in a simple or easy to implement

sense to one of maintaining low communications overhead. He states that most users find their

code often becomes slower on their first attempt to parallelize. The reason being lack of

understanding how hardware works, at least at a high level.

www.manaraa.com

19

2.3 COMMERCIAL SOFTWARE

 Commercial finite element codes such as Abaqus [9], ANSYS [10], and MSC Nastran

[11] all use some variant of a Newton-Raphson [1-3] type solver for solving systems of nonlinear

equations. Nastran has several variations of arc-length solvers referred to as the Riks method

[45,46] where iterations are constrained to a normal path, a modified Riks method [32] for an

updated normal path, and Crisfield’s method [31] for a circular path. Abaqus offers a modified

Riks method [31,32,47] and ANSYS offers Crisfield’s method [31]. Arc-length solvers are

specifically used for post-buckling type analysis of structures in these finite element codes.

Quasi-Newton or BFGS [16-19] updates for the Jacobian or tangent stiffness matrix are available

as an option in Nastran and Abaqus where ANSYS refers to use of a secant matrix implying

some other variation. Line searches [7] are also available in these codes where use of such a

method is included by default in Abaqus when using BFGS updates. Iterative solvers are also

available as part of an inexact-Newton solver where Nastran and ANSYS use a preconditioned

conjugate gradient method [26] and Abaqus uses a more generic preconditioned Krylov [28]

solver.

 Multi-body-dynamics codes MSC ADAMS [12] and RecurDyn [13] both use Newton-

Raphson as an initial method to search for static equilibrium. RecurDyn augments the solver

with a trust region method [14] in the event singularity with the Jacobian is encountered and

incorporates a line search procedure as well. ADAMS [12], on the other hand, offers a suite of

static solver options in addition to Newton-Raphson including tensor-Krylov [24] and several

optimization based solvers, one of which includes a line search strategy. These choices are some

of the more robust nonlinear solver options found in commercial software where attempts to find

www.manaraa.com

20

equilibrium can be made using an entire suite of solvers. No methods based on path following

were found and solvers will generally provide point solutions in closest proximity to as modeled

configurations when possible. Technical computing software MATLAB only offers

optimization algorithms imbedded in its fsolve [15] routine for solving general systems of

nonlinear equations. No variations of Newton-Raphson, tensor, or arc-length were found leaving

this up to users for programming and implementation.

 All of the referenced commercial software offers parallel operations with shared memory

parallelism being the most common. Abaqus, ANSYS, and MALAB extend parallel operations

to include use of GPUs while Nastran, ADAMS, and RecurDyn do not appear to have

implemented this latest form of parallel computing technology. Typical subroutines that have

been parallelized in FEA and MBD codes include matrix computation and factorization, linear

solvers, and eigenvalue solvers. MATLAB offers an even larger variety of shared memory

parallel operations [48-50] that are embedded in subroutines and occur by default without user

intervention. This implementation may be referred to as implicit parallelism [48] and such

operations are minimally referenced in MATLAB’s user documentation [15]. This default can

significantly add to the challenge of achieving speedup for explicit parallel code on shared

memory computers where underlying parallel operations in serial versions of code are already in

place.

www.manaraa.com

21

CHAPTER 3

SOLVING GENERAL SYSTEMS OF EQUATIONS

 Solving systems of nonlinear equations can be challenging and analysts are often required

to provide an initial guess of the solution as a starting point for use in an iterative solver. Insight

into approximate solutions leading to a good initial guess can usually be obtained if equations are

representative of a physical system. However, this process may not be achievable for complex

systems or when the analyst lacks familiarity or experience with the system. In this case,

convergence may not be achieved if the initial guess is not close to the solution. A general

nonlinear solver suite based on the arc-length method with these circumstances in mind was

developed for the purpose of numerical experimentation and was found to be a useful alternative

to the fsolve function inherent to the MATLAB software [51]. Due to the additional unknown

variable and supplemental constraint equation used by the arc-length method, curves

representing solutions to parameterized equation sets were found by embedding the solver in a

loop. Restarts in the analysis were minimized as the arc-length method is capable of solving

beyond local maxima or minima on smooth curves. Several examples are provided

demonstrating the unique capabilities of arc-length solvers.

3.1 INTRODUCTION

 Arc-length methods have successfully been used as a means for solving problems in

structural analysis that involve tracking sudden changes in equilibrium paths or force-

www.manaraa.com

22

displacement curves [30-32,45]. The collapse of a structure from an applied load for example

may not necessarily involve total system failure but a sudden geometric change where the

structure has “snapped” to a new configuration. Analysts may be interested in tracking the

equilibrium path through the snapping event and want to determine how the structure behaves if

continued loading is applied. Arc-length methods were developed for this purpose and are

capable of tracking solutions beyond limit points such as points 2 or 3 on the sample curve in

Fig. 1.

Starting from point 1 on Fig. 1, Newton-Raphson solvers are able to find points on the

path up to limit point 2. Point 4, if found, would be the next available value of displacement at

this specified force value leading to a break or discontinuity in path. The procedure could be

restarted near point 4 using an estimated larger value for displacement in an attempt to find a

new point on the path. Once a new starting point is found, additional points on the missing

portion of the path could be found by reducing force until the lower limit at point 3 is

encountered. Additional restarts in the analysis could be performed including use of MATLAB’s

fsolve routine [15] to help fill in the remaining section of the path between points 2 and 3 for

specified levels of force.

Although such an approach could be used, it would be less robust as compared to a solver

that could track the equilibrium path beyond limit points in a continuous manner. There is also

the possibility of gathering an insufficient number of points needed to construct the path or

missing sections containing abrupt turns. Arc-length methods, on the other hand, treat force as

an unknown parameterizing variable extending the search for new points to the two-dimensional

space represented by Fig. 1. When force is maintained as a specified variable in other methods,

the search for new points is limited to a horizontal line crossing the vertical axis at the specified

www.manaraa.com

23

value. When force is treated as a simultaneous unknown parameter, search procedures become

multi-dimensional, making the arc-length method better suited for finding the different nonlinear

solutions. Although Fig. 1 is representative of a single-degree-of-freedom system, the same

holds true for multi-degree-of-freedom systems where any component of the displacement vector

can be plotted against a factor used to scale force. Example problems studied in this chapter

demonstrate robustness of arc-length methods through minimizing or avoiding the need for

restarts and added capability to search for and successfully find solutions where other solvers

may fail. Development of the solver suite provided a robust tool set for finding solutions to

nonlinear systems of equations and visualizing results.

Figure 1. Equilibrium path exhibiting limit points and snap-through

3.2 SOLVER THEORY AND BACKGROUND

The objective in solving nonlinear systems involves finding 𝒖 such that 𝒇(𝒖) = 𝟎 (1)

www.manaraa.com

24

In structural analysis, the problem is formulated as 𝒇(𝒖) − 𝜆𝑭 = 𝟎 (2)

where the objective is to find a balance between internal system forces 𝒇(𝒖) and a scaled value

of applied force 𝑭. Use of this format allows for generation of curves such as Fig. 1 where

displacement can be found at various levels of force. This equation format was used to

implement the arc-length solver for general sets of nonlinear equations where 𝑭 is taken as unity

or a column vector of ones denoted as 𝟏. The refined objective is to find 𝒖 such that 𝒇(𝒖) = 𝜆𝟏 where 𝜆 can be any constant that is common to the set of equations. By making λ an

unknown parameter, a higher likelihood of finding a solution from an initial guess exists as 𝜆 can

be any scalar value including zero. Once a solution has been found, it can be used as an initial

guess for nearby values of 𝜆 making the process less random and more likely to find new

solutions. The process can therefore be continued to construct curves representing all values of 𝜆

common to the equation set with regards to individual components of 𝒖.

At the core of many solver methods is the Newton-Raphson scheme. A first-order Taylor

series is applied to the system of nonlinear equations 𝒇(𝒖) which “linearizes” the system at

specific values of 𝒖 resulting in 𝒇(𝒖) + 𝑲∆𝒖 − 𝜆𝑭 = 𝟎 (3)

Matrix 𝑲 is typically referred to as the Jacobian or tangent stiffness as it represents a tangent line

to the equilibrium path at 𝒖. The resulting set of equations may now be used as a local linear

model to predict new values of 𝒖 for a fixed value of 𝜆. A measure of error or residual in the

nonlinear equations at the predicted value of 𝒖 is used to correct 𝒖 and update the linear model

for the next step. The process is repeated through iterations 𝑖 until a specified tolerance on error

is achieved or an iteration limit has been met to avoid the possibility of an infinite loop if the

www.manaraa.com

25

solver were to diverge. A graphical representation of the procedure is shown in Fig. 2. The

iteration path for this case follows a series of horizontal points starting with initial predicted

values for 𝒖0 and 𝑲0 and corresponding corrected values 𝒖𝑖 and 𝑲𝑖 along the horizontal line 𝜆𝑭

until converging with the equilibrium path.

Figure 2. Newton-Raphson method for single-degree-of-freedom

Variations of the Newton-Raphson method exist to save on cost associated with

computation and inversion of the tangent stiffness matrix when solving for 𝛥𝒖. These variations

include a modified Newton-Raphson method where 𝑲 is held constant during iterations and a

quasi-Newton method where a secant approximation for 𝑲 is obtained by passing a line through

two previously found points (𝒖𝑖, 𝒇(𝒖𝑖)) on the equilibrium path. One of the most popular quasi-

Newton methods is known as the Broyden-Fletcher-Goldfarb-Shanno or BFGS method [16-19].

Tensor methods [21] can also be considered a variation of the Newton-Raphson method as they

www.manaraa.com

26

include second-order information from the Taylor series approximation of 𝒇(𝒖). Instead of

using a linear approximation of the nonlinear model, a quadratic approximation is used for an

improved local model at points 𝒖𝑖. Tensor methods will generally require fewer iterations to

reach a solution as compared to Newton-Raphson methods due to the improved model. This

increased convergence rate, however, comes at a cost due to added computation of the quadratic

term. One example of a tensor solver implemented in commercial software can be found in the

multi-body-dynamics analysis package MSC ADAMS [12].

The arc-length method differs from the Newton-Raphson method by incorporating to the

procedure an additional constraint equation for the iteration path that allows 𝜆 to be treated as

unknown. Graphical representation of two common variations of the constraint are shown in

Fig. 3. A user specified arc-length 𝐿 is provided, which controls the starting point of the iteration

path used to search for a new point at the intersection with the equilibrium path. Early

developments by Riks [45] and Wempner [30] were later updated by Ramm [32] to maintain

symmetry of governing equations for finite element analysis. A normal path or hyperplane

relative to arc-length 𝐿 is used to search for new points on the equilibrium path for this case.

Crisfield [31] made a further refinement and proposed using a circular or hyperspherical iteration

path. The circular iteration path reduces 𝜆 by a larger amount as compared to the normal

iteration path and would more likely intersect the equilibrium path near limit points for a given

arc-length 𝐿. A detailed description of arc-length solvers and how they are implemented for

nonlinear finite element analysis can be found in the MSC Nastran solution 400 user guide [11].

An overview of nonlinear solvers for finite element methods in general can be found in texts by

Cook [2] and Bathe [1].

www.manaraa.com

27

Figure 3. Arc-length method for single-degree-of-freedom

Solvers implemented with MATLAB’s fsolve are based on trust-region methods used for

numerical optimization where a minimization procedure is used to find roots of Eq. (1). Trust-

region solvers are more robust than Newton-Raphson based solvers as they are able to handle

cases where 𝑲 is singular. Singularity becomes an issue near limit points as shown on Fig. 1 due

to the zero or near zero slope condition of 𝑲. Singularity of 𝑲 will cause Newton-Raphson

methods to fail or diverge from finding a solution due to the requirement of matrix inversion for

finding updated values of 𝒖𝑖. Further details on trust-region methods can be found in reference

[14]. Although trust-region methods are more robust, they still do not have the capability of

including 𝜆 as unknown due to the lack of a constraint equation for this variable in the algorithm.

Similar to Newton-Raphson methods, a restart in analysis would be required for equilibrium path

continuation when traversing limit points.

www.manaraa.com

28

3.3 SOLVER SUITE DEVELOPMENT AND IMPLEMENTATION

Several solver variations were implemented using MATLAB for the purpose of

numerical experiments involving systems of nonlinear equations. These solvers include Newton-

Raphson, tensor, BFGS, and arc-length methods on a normal plane and sphere. Equation sets are

defined using stand-alone functions or subroutines that are called by the solver. A main program

or script file is used to run the solver and specify results formatting. A flowchart representation

of the process is shown in Fig. 4. Names of the corresponding MATLAB files or m-files are

identified on the chart, and some of these m-files are provided in the Appendices. The function

used to define the system of nonlinear equations has the option for explicit definition of the

Jacobian matrix. This definition was easy to implement for the small-scale demonstration

problems used in this chapter but may not be practical if the system is large. An additional

function is included to compute the Jacobian matrix numerically using a perturbation technique.

Figure 4. Program flowchart

www.manaraa.com

29

3.4 DEMONSTRATION PROBLEMS

Two, three, and eleven degree-of-freedom (DOF) sample problems were chosen to

demonstrate the arc-length solver capability and identify curves representing solutions to the

equation sets. Eq. (4) consists of the two DOF system with an objective of characterizing the

family of equilibrium pairs (𝑢1, 𝑢2) parameterized by 𝜆. Overlaid surface plots of 𝑓1 and 𝑓2 are

shown in Fig. 5. For the case 𝜆 = 0, equilibrium solutions correspond to any intersections of the

two surfaces that simultaneously occur at the level 𝑓1 = 𝑓2 = 0 in Fig. 5. No solutions exist for 𝜆 = 0. This conclusion is easily determined by finding the single polynomial equation for 𝑢1

after eliminating 𝑢2, by numerical factoring, and finally by noting all roots are complex numbers.

For the case 𝜆 ≠ 0, equilibrium solutions correspond to the intersections of the two surfaces in

Fig. 5, and the corresponding level 𝑓1 = 𝑓2 ≠ 0 determines the specific value of 𝜆. Therefore,

the vertical axis in Fig. 5 also denotes the value of 𝜆 for the intersection curve. A continuous

family of solutions exists for −1.0522 ≤ 𝑢1 ≤ +1.0522, −0.2968 ≤ 𝑢2 ≤ +1.2968, and +0.5000 ≤ 𝜆 ≤ +2.5497. These results are easily determined by finding the quadratic equation

for 𝑢2 in terms of 𝑢1 after enforcing 𝑓1 = 𝑓2 and by finding the range for 𝑢1 where only real

roots exist. Independent variables are plotted on the horizontal plane and function values are on

the vertical axis. The solution is represented by the “shoe-shaped” curve representing the

intersection of the two surfaces in Fig. 5. 𝒇(𝒖) − 𝜆𝟏 = 𝟎 (4)

where

𝒇(𝒖) = {𝑓1(𝒖)𝑓2(𝒖)} = {𝑢16 + 𝑢22 + 0.5𝑢12 + 𝑢2 + 0.5}

www.manaraa.com

30

The previous results are now used as a test case to validate the arc-length method

algorithm and nonlinear solver suite code. Newton methods can be used initially and then

switched to arc-length methods when 𝜆 reaches a local maximum or minimum on the curve.

Alternately, arc-length methods can be used for the entire procedure. Specification of the arc-

length parameter 𝐿 will control spacing between points on the curve where specification of an

incremental change in 𝜆 will control spacing between points for Newton methods. Several points

consisting of combinations of ones and zeroes are easily identified by inspection of Eq. (4) and

are used as starting locations for solvers that trace the equilibrium path. This accurate

initialization will not necessarily be the case for more complex systems meaning an initial guess

in the literal sense will be required. Although guessed points (𝒖0, 𝜆0) may not lie on the

equilibrium curve, 𝒇(𝒖0) and 𝑲0 would still be output to initialize the solver procedure. This

procedure can be represented graphically where point ① on Figs. 2 and 3 no longer lies on the

equilibrium curve and slope 𝑲0 is based on the fictitious point. An iteration path will still be

established and the process will likely still converge to a point on the equilibrium path. The arc-

length method using a circular iteration path may produce complex roots for initial converged

values (𝒖1, 𝜆1) where this is typically not the case for known or previously computed

initialization points. The appearance of complex roots is due to a quadratic equation used to

enforce the circular constraint and the fact that guessed values will likely not fall on the

equilibrium path where real number solutions exist. Through trial and error, it was found that

taking the real component of the complex root for a subsequent guessed value provided

satisfactory results for cases studied. Complex roots are not an issue for the other solvers unless

they are inherited products of system 𝒇(𝒖). In the event a complex solution is produced, it is

rejected and new guesses are provided until a real solution is found.

www.manaraa.com

31

When using the arc-length method with nearly arbitrary initialization, the equilibrium

path or intersection curve in Fig. 5 is generated, exactly matching the known solution to a

specified tolerance. Once a point was identified on the equilibrium path, both arc-length variants

readily identified new points and followed the equilibrium path past limit points avoiding the

need for restarts. Although arc-length methods can fail due to singularity issues similar to

Newton methods, the procedure typically skips over and does not directly land on a limit point.

If it does, an automatic reduction or increase in the specified arc-length could be made to deal

with trouble locations. Arc-length methods were also able to find solutions for initial guess

values of 𝜆 outside the solution range, such as 𝜆 = 0, since the method inherently varies 𝜆.

When 𝜆 = 0 is strictly enforced, surfaces intersect above the zero-plane and there is no solution

to the equation set. Newton methods are limited to searching planes normal to the 𝜆 axis

resulting in surface intersections at specified levels. When 𝜆 = 0 was specified as an initial

guess for Newton methods, no solution was found as the algorithm did not converge. Attempts

were also made using fsolve for the 𝜆 equal to zero initial guess and convergence could not be

achieved.

Figure 5. Intersecting surfaces (2 DOF)

www.manaraa.com

32

A more complex three DOF system given in Eq. (5) was tested and results for selected

variable 𝑢1 are shown in Fig. 6. Solution accuracy was confirmed by back substituting into the

nonlinear equation set and assessing the residuals. Curves generated for systems of three DOF

and greater represent intersections of hypersurfaces in hyperspace and are best viewed

graphically by plotting any of the selected degrees-of-freedom versus 𝜆. Fig. 6 shows the

sectional view of 𝜆 versus 𝑢1. Inspection of the equations was required to establish allowable

ranges for variables to avoid complex roots occurring from initial guesses needed to start the

solvers. This treatment is due to square roots contained in Eq. (5) where it is seen that 𝑢3 must

be zero or a positive value and 𝑢2 must be zero or a negative value. The solution curve was

found not to close in this case, and the curves become asymptotic as 𝜆 continues to increase. If

the objective was to find solutions for 𝜆 = 0, two zero-crossings can be identified. Monitoring

for a sign change in 𝜆 was incorporated into the root extraction procedure to trigger the Newton-

Raphson method and provide solutions precisely at 𝜆 = 0 where solutions are (𝑢1 = 2, 𝑢2 =−1, 𝑢3 = 4) and (𝑢1 = 0.6240, 𝑢2 = −1.7880, 𝑢3 = 5.9308) for Eq. (5). Due to 𝜆 being

unknown in the arc-length method, zero-crossings will occur between positive and negative

values of 𝜆 on the solution curve, and the Newton-Raphson method simply provides a small

convenient adjustment to achieve the precisely desired condition. 𝒇(𝒖) − 𝜆𝟏 = 𝟎 (5)

where

𝒇(𝒖) = { 𝑢31/2 + 𝑢12𝑢23𝑢3 + 𝑢3−1 + 4𝑢2 + 17.75(−𝑢3𝑢2)1/2 + 𝑢33𝑢1 − 𝑢2−2 + 3𝑢1 − 135𝑢1𝑢2𝑢3 + 𝑢22𝑢3 + 𝑢12𝑢3 − 3𝑢1𝑢2 − 18 }

www.manaraa.com

33

Similar to Newton-methods, the fsolve algorithm was found to fail for initial guesses with 𝜆 values below the minimum range of -5 on Fig. 6. One of the biggest challenges for all solvers,

including fsolve, was the possibility of producing complex values of 𝒖. The fsolve algorithm

appeared to be the most robust for not producing complex values from poor initial guesses but

still lacked the capability to track the solution with relatively even spacing of points as compared

to the arc-length method. In the near horizontal portion of the curve on Fig. 6 for example, a

very fine increment in 𝜆 would be required when traversing upward. Solvers without arc-length

control in this case can overshoot and lose track of the solution.

Figure 6. Solutions for 𝜆 versus 𝑢1 (3 DOF)

An eleven DOF system given in Eq. (6) with results shown for a selected variable in Fig.

7 demonstrates the possibility of multiple complex shaped curves for solutions in hyperspace.

Note the multi-values of 𝑢2 for a single 𝜆 value on the curves. The larger closed curve is

represented by a series of blue dots and the smaller by a series of small red circles to indicate

found points. Equations are representative of the collapsing arch mechanical system found in

www.manaraa.com

34

Chapter 4 and the initial value of 𝒖 was based the known initial state or configuration of the

system. Only a guessed value of 𝜆 would be required in this case. The fsolve algorithm, which

included three variants using default settings, could not find a solution when 𝜆 = 0 was used as

an initial guess. The algorithm could, however, find solutions for other values within the range

shown on Fig. 7. Newton-based solvers were able to find a solution for the 𝜆 = 0 initial guess

but jumped between curves for a 𝜆 = 1 initial guess. The arc-length method was able to trace

both curves in this instance and a restart was only required for traversing the pointed section of

the curve on the upper right-hand corner of Fig. 7. The curve was completed by changing the

arc-length parameter from a positive to negative value to trace the curve in both clockwise and

counter-clockwise directions from an initial starting point. The small curve could be traced in a

single sweep. 𝒇(𝒖) − 𝜆𝟏 = 𝟎 (6)

where

𝒇(𝒖) =

{

 𝑢7 − 𝑢9𝑢8 − 𝑢10 +𝑚𝑔𝑢9 − 𝑘(𝑢3 + 𝐿𝑐𝑜𝑠(𝑢6) − 𝐸)𝑢10 + 𝑢11 +𝑚𝑔𝐿𝑠𝑖𝑛(𝑢5)(𝑢7 + 𝑢9) − 𝐿𝑐𝑜𝑠(𝑢5)(𝑢8 + 𝑢10)𝐿(𝑢9𝑠𝑖𝑛(𝑢6) − 𝑢10𝑐𝑜𝑠(𝑢6) + 𝑢11𝑐𝑜𝑠(𝑢6))…+ 𝑘𝐿𝑠𝑖𝑛(𝑢6)(𝑢3 + 𝐿𝑐𝑜𝑠(𝑢6 − 𝐸))𝑢1 − 𝐴1 − 𝐿𝑐𝑜𝑠(𝑢5)𝑢2 − 𝐴2 − 𝐿𝑠𝑖𝑛(𝑢5)𝑢3 − 𝑢1 − 𝐿(𝑐𝑜𝑠(𝑢6) + 𝑐𝑜𝑠(𝑢5))𝑢4 − 𝑢2 − 𝐿(𝑠𝑖𝑛(𝑢6) + 𝑠𝑖𝑛(𝑢5))𝑢4 + 𝐿𝑠𝑖𝑛(𝑢6) }

where 𝐿 = 5, 𝐴1 = 𝐴2 = 0, 𝑘 = −0.1,𝑚𝑔 = 1, 𝐸 = 20cos (𝜋4)

www.manaraa.com

35

Figure 7. Solutions for 𝜆 versus 𝑢2 (11 DOF)

3.5 CONCLUSIONS

Arc-length methods were found to be useful tools for solving systems of nonlinear

equations and generating curves representing the many possible solutions for a given system.

Newton-based solvers and MATLAB’s fsolve would also be capable of generating similar curves

but in a less robust manner. Arc-length solvers were found to minimize the need for restarts by

continuing to track points on curves past and around limit points for smooth portions. Newton-

based methods, on the other hand, would fail near limit points on curves and fsolve was also

found to fail for cases studied if 𝜆 was outside the solution range. By readily tracing solution

curves, arc-length methods helped identify variable bounds and zero-crossings of curves for the

special solution to 𝒇(𝒖) = 𝟎. Without identifying solution curves or only discrete portions,

critical or specific points could be missed. The fsolve algorithm appears more robust for finding

www.manaraa.com

36

point solutions from poor initial guesses if 𝜆 is within the solution range as was the case for the

three DOF system. The arc-length method was able to find solutions for guessed values of 𝜆 that

were outside the solution range and worked well for the eleven DOF system where 𝒖 was based

on an initial physical state of the mechanical system. Without use of the arc-length method,

solution curves would be difficult to trace due to likelihood of multiple restarts and the

requirement for new guesses to search for new points on curves.

www.manaraa.com

37

CHAPTER 4

EQUILIBRIUM FOR MULTI-BODY-DYNAMIC SYSTEMS

 Determining states of static equilibrium for MBD systems can be challenging and may

result in convergence failure for nonlinear static solvers. Analysts are often faced with

uncertainty in regards to the quantity of candidate equilibrium states or whether a state of

minimum potential energy was found. In the event of static solver failure or uncertainty with

regards to a candidate solution, equilibrium could be obtained through a dynamic simulation

which may require the addition of artificial damping. This method, however, can have

significant computational expense as compared to static solution procedures. Using simple

MBD systems representing a pendulum and two variations of a spring supported arch, arc-length

solvers were found suitable for identifying equilibrium states through a robust production of

static solution curves thereby avoiding dynamic simulation. Using these examples, a procedure

for finding the correct equilibrium state for general systems is proposed.

4.1 INTRODUCTION

This chapter is an expansion of work documented in Ref. [51] and Chapter 3 where arc-

length solvers [30,31,45] were applied to general systems of nonlinear equations in search of the

many possible solutions for a parameterized system versus the special case of the zero parameter

solutions. Arc-length solvers have the unique capability of following solution curves past

turning or limit points and are less likely to fail or require restart as compared to other

www.manaraa.com

38

parameterized solvers. Graphical representation of the total solution set was plotted using

sectional views of the multi-dimensional hyperspace where any of the independent state

variables could be plotted against the dependent variable denoted as 𝜆. In the arc-length method, 𝜆 is treated as an unknown and computed from an additional constraint equation. Plotting the

solution in this manner revealed a path or curve representing the intersection of hypersurfaces

within the specified sectional view. Sectional views of systems studied demonstrated the

possibility of closed curves, curves that self-intersect, multiple curves, and open curves that

reach an asymptotic limit implying an intersection of surfaces that become parallel. Possibility

of multiple roots or solutions was identified as curves tended to cross the 𝜆 equal to zero axis at

more than just one location. Zero-crossings of the path were of particular interest for systems

studied in this chapter as they represent candidate equilibrium states as equations were based on

physical systems. Mechanical systems including a pendulum and variations of a spring

supported v-shaped arch were used to develop theory and a proposed method for selecting

equilibrium. A variety of selection criteria were used to identify equilibrium including potential

energy, eigenvalues, and solution curves generated using an arc-length solver.

Equations of motion for the mechanical systems used in this study were derived using

Lagrange’s method [52]. Reducing the derived differential equations to first-order and coupling

them with the system’s algebraic constraint equations resulted in sets of differential and

algebraic equations that could be solved numerically using various methods. This procedure can

be automated and is central to commercial multi-body-dynamics software MSC ADAMS. A

detailed explanation on how this procedure is implemented including derivation of equations for

the pendulum used as the starting example can be found in Ref. [53]. Modeling of mechanical or

other dynamic systems typically results in initial configurations or states that are not in

www.manaraa.com

39

equilibrium. In the spring supported arch under the influence of gravity for example, the spring

may not be exactly extended or compressed from its free length to balance the applied load. The

search for equilibrium in this case can be done either dynamically with added damping for a

decayed response towards the static configuration, or statically where time dependent terms in

the governing equations are set to zero and an attempt to solve the resulting system is performed.

The dynamic approach has an obvious computational expense due to implementing a nonlinear

solver at every time step versus the cheaper static approach where the solver is implemented only

once. The static solution, however, includes risk for converging to a rest-state that numerically

satisfies equations but does not represent equilibrium. As noted in Ref. [53], the static solution

for a pendulum may align with the gravity vector and converge to an upward pointing vertical or

unstable configuration versus the stable downward configuration.

Finding equilibrium statically using arc-length solvers and previously mentioned

selection criteria are the primary focus of this chapter. Arc-length solvers are typically used for

tracking nonlinear events such as post-buckling or snap-through in structures and have been

successfully implemented in commercial finite element codes such as MSC Nastran [11] and

Abaqus [9]. They may also be referred to as numerical path following [38] or continuation

methods [37] where such terminology may be more familiar to mathematicians. There appears

to be little cross-fertilization between the mathematical and engineering communities as noted by

Felippa [35] and use of arc-length solvers in general seems limited. Current implementation in

multi-body-dynamics codes, including MSC ADAMS [12], could not be found from literature

review. Based on previous work in Ref. [51], arc-length solvers will increase likelihood for

finding a solution where other solvers may fail, and help identify the many candidate or

numerically feasible equilibrium states using the generated solution curves. Note that arc-length

www.manaraa.com

40

solvers and proposed methods will require many static solutions for construction of curves;

however, this can be viewed as a compromise between a one-time static approach that may

converge to an improper solution or fail and a full dynamic simulation.

Efficiency of arc-length or other Newton-Raphson based solvers is primarily a function

of the computational cost associated with calculation and factorization of the tangent stiffness or

Jacobian matrix and use of a modified Newton-Raphson method can be effective in reducing this

cost [1]. Modified methods hold the Jacobian constant or only update it periodically during

solver iterations or search for a solution. While this tends to increase the number of solver

iterations required for convergence, overall computational cost and wall time can be significantly

less. In addition to minimizing the computation and factorization of the Jacobian, known

patterns, invariant terms, sparsity, and parallel operations can be taken advantage of as well. A

detailed study relevant to computation of the Jacobian for multi-body-dynamic systems can be

found in Chapter 5.

The structure of this chapter begins with a description of a parameterized Newton-

Raphson solver followed by two variations of arc-length solvers that modify Newton-Raphson

with an additional constraint. Governing equations for a pendulum and spring supported arch are

presented along with solution curves obtained using an arc-length solver and the found candidate

equilibrium states. The paper ends with a proposed method for selecting equilibrium and

conclusions.

www.manaraa.com

41

4.2 THEORY AND METHODS FOR PARAMETERIZED NEWTON-RAPHSON

A common approach for finding static equilibrium in multi-body-dynamic systems

involves setting time dependent terms in governing DAEs to zero and solving the remaining

nonlinear algebraic equations using some variant of a Newton-Raphson solver [53]. The general

format for such systems may be written in compact form as in Eq. (1) where the objective is to

find vector 𝒖 that makes all equations within vector 𝒇 equal to zero. Searching for other than

zero solutions as part of a path following or continuation method requires inclusion of an

additional parameter such that Eq. (1) can be redefined as given in Eq. (2) where scalar 𝜆 can be

any real number and 𝑭 is a reference vector set to all ones. Solving of Eq. (2) requires

linearization about a local point 𝒖𝑖 through a first-order Taylor series expansion resulting in 𝒇(𝒖) − 𝜆𝑭 ≈ 𝒇(𝒖𝑖) + (𝝏𝒇𝝏𝒖)𝑖 (𝒖 − 𝒖𝑖) − 𝜆𝑭 = 𝟎 (7)

Unknown vector 𝒖 will be referred to as the state vector and contains information on position,

velocity, and constraint forces for the mechanical systems being modeled. Updating terms in Eq.

(7), which includes the matrix of first-order partial derivatives for 𝒇 and the incremental change

or difference between 𝒖 and 𝒖𝒊, results in 𝒇(𝒖𝑖) + 𝑲𝑖∆𝒖𝑖 − 𝜆𝑭 = 𝟎 (8)

Eq. (8) may now be solved using a Newton-Raphson method where a value for 𝜆 needs to be

specified. A stepwise procedure for solving Eq. (8) is given in Subsection 4.2.1 with graphical

representation shown in Fig. 2. Note that results only for 𝜆 equal to zero are admissible solutions

for equilibrium as other values of 𝜆 modify governing equations with a scalar offset for non-zero

solutions to equations. Static solution curves can be constructed through incremental variation of 𝜆 as part of a path following method in an attempt to identify additional equilibrium states.

www.manaraa.com

42

Though plausible, such an approach would be difficult using Newton-Raphson due to failure at

limit or turning points on solution curves which is better suited for arc-length solvers where 𝜆 is

treated as an unknown and path following is more easily achieved.

4.2.1 STEPWISE PROCEDURE FOR PARAMETERIZED NEWTON-RAPHSON

1. Specify a value for 𝜆 and provide an estimate or initial guess for state 𝒖𝑖 at 𝜆𝑭. Use

iteration count 𝑖 = 0 to begin the process.

2. Calculate 𝑲𝑖 or the matrix of first-order partial derivatives with respect to state variables

in vector 𝒖𝑖 where

 𝑲𝑖 = [
 𝜕𝑓1𝜕𝑢1 ⋯ 𝜕𝑓1𝜕𝑢𝑁⋮ ⋱ ⋮𝜕𝑓𝑁𝜕𝑢1 ⋯ 𝜕𝑓𝑁𝜕𝑢𝑁]

3. Calculate system vector 𝒇(𝒖𝑖).
4. Determine the residual or difference between 𝜆𝑭 and 𝒇(𝒖𝑖) where 𝑹𝑖 = 𝜆𝑭 − 𝒇(𝒖𝑖).
5. Calculate ∆𝒖𝑖, where ∆𝒖𝑖 = 𝑲𝑖−1𝑹𝑖.
6. Check if ∆𝒖𝑖 is small with respect to 𝒖𝑖. This check may be done by taking the ratio of

vector norms or absolute values for single-degree-of-freedom systems and seeing if this is

less than a user-specified error tolerance. Is ‖∆𝒖𝑖‖/‖𝒖𝑖‖ less than the specified error

tolerance?

7. If yes, stop, the solution has been obtained; otherwise, update both the iteration count and 𝒖𝑖 and repeat the procedure starting with step 2. The updated value of 𝒖𝑖 is obtained by

adding ∆𝒖𝑖 to the current value of 𝒖𝑖 where 𝒖𝑖+1 = 𝒖𝑖 + ∆𝒖𝑖.

www.manaraa.com

43

8. If a solution has been obtained and search for other nearby solutions is desired as part of

a path following procedure, restart the procedure beginning with step 1. Use the

previously found solution as an initial guess and specify a new value for 𝜆 that represents

a small change away from that solution.

4.3 THEORY AND METHODS FOR TWO VARIATIONS OF ARC-LENGTH

The arc-length method is similar to the Newton-Raphson method with the exception to 𝜆

being unknown. The variable ∆𝜆𝑖 is introduced for use in incremental form and is defined as the

difference between unknown and known values of 𝜆 at iterations 𝑖 + 1 and 𝑖 where ∆𝜆𝑖 = 𝜆𝑖+1 −𝜆𝑖. Eq. (8) is now modified as 𝒇(𝒖𝑖) + 𝑲𝑖∆𝒖𝑖 − (∆𝜆𝑖 + 𝜆𝑖)𝑭 = 𝟎 (9)

At equilibrium, both ∆𝜆𝑖 and ∆𝒖𝑖 become very small such that the difference between 𝜆𝑖𝑭 and 𝒇(𝒖𝑖) or residual 𝑹𝑖 is minimized. Iterations are typically stopped when a user-specified error

tolerance on ∆𝒖𝑖 has been achieved. Solving of Eq. (9), however, requires an additional

equation as there is now an additional unknown variable. The additional equation constrains

iterations to a defined path with two common variations being a normal path [30,45] or circular

path [31]. The starting location for the iteration path is based on a user-specified arc-length 𝐿

that controls the magnitude of the initial ∆𝒖𝑖 and ∆𝜆𝑖 terms. The arc-length is made tangent to a

known equilibrium point or alternately a guessed fictitious point using the tangent stiffness

matrix 𝑲, which can have either positive or negative slope based on the matrix determinant.

Once the initial point at the end of the arc-length has been found, the residual is checked and

iterations are performed along the specified path until convergence or a limit on iterations is

www.manaraa.com

44

achieved. Fig. 3 shows how the arc-length is used to provide an initial guess or starting point on

the iteration path. Both 𝜆 and 𝒖 are varied through the process which extends the search for new

points on the equilibrium path to the normal or circular path as shown in Fig. 3 versus the

horizontal path used by the Newton-Raphson method in Fig. 2. This adjustment is what allows

arc-length solvers to track equilibrium paths or solution curves for given systems that may

suddenly change slope or direction in a more robust manner as compared to others solvers. Due

to 𝑭 being constant, it has been left off of the remaining figures for clarity. Known or starting

points correspond to an iteration count of zero or point (𝒖0, 𝜆0) on figures. In the event the

method fails to converge, the magnitude of the arc-length 𝐿 can be reduced to a smaller value

and the process repeated. This logic can be done by reducing the arc-length by a factor such as

one half.

Arc-length methods may also be referred to as predictor-corrector or pseudo arc-length

continuation methods [37,38]. The term pseudo is best understood with respect to the single-

degree-of-freedom system shown in Fig. 3 where a tangent line 𝐿0 of slope 𝐾0 is used to

approximate the length of the arc or curve between points ① and ③ or ① and ④ depending

on the iteration path being used. Point ② at the end of the tangent line can also be referred to as

a predictor for points ③ or ④ on the curve. Corresponding linear model iterations would then

be performed as correctors along the iteration path until a converged solution or intersection with

the equilibrium path is found. The basic concept behind numerical path following or

continuation using this approach is that a series of tangent lines or approximate arc-lengths serve

as an ideal method for parameterization of a given curve.

www.manaraa.com

45

4.3.1 ARC-LENGTH METHOD USING NORMAL ITERATION PATH

Perhaps the most straightforward implementation of the arc-length method is to constrain

iterations to a normal path. This path may also be referred to as a plane or hyperplane to

emphasize use for multi-degree-of-freedom systems. Because the arc-length 𝐿 is specified and

tangent stiffness 𝑲 can be calculated at known states, ∆𝒖0 and ∆𝜆0 can be calculated using

length relations for a right triangle and Eq. (9). Terms 𝒇(𝒖𝑖) and 𝜆𝑖𝑭 cancel for points lying on

the equilibrium path resulting in the following set of equations. 𝑲𝑖∆𝒖𝑖 − ∆𝜆𝑖𝑭 = 𝟎 (10) 𝐿𝑖2 ≝ (∆𝜆𝑖)2 + (∆𝒖𝑖)𝑇∆𝒖𝑖 (11)

Subscripts in these equations are for 𝑖 equal to zero as they are based on a known equilibrium

point or initial configuration. The two equations can be solved using a second coincident

triangle where the length of one edge is specified. Unknown variables are found based on

equivalent length ratios as shown in Fig. 8 where numbered points correspond to those found on

Fig. 3. Eq. (11) is commonly used to define arc-length 𝐿, which is a “distance” in the 𝜆; 𝒖 space

with inconsistent dimension since ∆𝒖𝑖 has possibly mixed dimensions of position; velocity; and

force for mechanical applications while ∆𝜆𝑖 is dimensionless. Alternately, a normalizing factor

can be applied to the ∆𝒖𝑖 product in Eq. (11) to render this term dimensionless and thereby

define 𝐿 in a consistent sense [1]. An update rule for arc-length values 𝐿𝑖 can be specified based

on local curvature of the equilibrium path, or simply held constant. Computations in the

dissertation used fixed values of arc-length and automatically reduced this parameter by one-half

in the event the solver failed to converge within a specified number of iterations.

www.manaraa.com

46

Figure 8. Calculation of ∆𝒖0 and ∆𝜆0 for single-degree-of-freedom system

The subscript g in Fig. 8 is used to denote the given or specified value ∆𝜆𝑔, which is

typically set to one. The sign of ∆𝜆𝑔 depends on whether a positive or negative slope is used for

the arc-length. For multi-degree-of-freedom systems this is based on the sign of the matrix

determinant of 𝑲. The ability to control the slope of the arc-length is what allows the arc-length

method to change direction and traverse turning or limit points on the equilibrium path. ∆𝒖𝑔 is

calculated using Eq. (10) and 𝐿𝑔 is calculated using Eq. (11) where subscript 𝑖 is replaced with g.

Length ratios can then be set up between the two triangles and unknown values of ∆𝒖0 and ∆𝜆0

are calculated using ∆𝜆0𝐿0 = ∆𝜆𝑔𝐿𝑔 (12)

∆𝒖0𝐿0 = ∆𝒖𝑔𝐿𝑔 (13)

Once the values of ∆𝒖0 and ∆𝜆0 are calculated using Eq. (12) and Eq. (13), the point at the end

of the arc-length is found by adding these values to the previous known point. This step provides

www.manaraa.com

47

a starting point for iterations where 𝜆𝑖 and 𝒖𝑖 terms are updated throughout the procedure by

adding incremental changes to previous estimates for the solution. 𝒖𝑖+1 = 𝒖𝑖 + ∆𝒖𝑖 (14) 𝜆𝑖+1 = 𝜆𝑖 + ∆𝜆𝑖 (15)

Corresponding iteration points (𝒖𝑖, 𝜆𝑖) are projected normal to the arc-length such that the dot

product of the vectors used to define the arc-length and corresponding points on the iteration

path is zero based on orthogonal orientation of vectors. The equilibrium and constraint equations

used for solving unknown ∆𝒖𝑖 and ∆𝜆𝑖 are defined respectively as 𝑲𝑖∆𝒖𝑖 = 𝑹𝑖 + ∆𝜆𝑖𝑭 (16)

⌊(∆𝒖0)𝑇 ∆𝜆0⌋ {∆𝒖𝑖∆𝜆𝑖 } = 0 (17)

The row vector in Eq. (17) defines the arc-length, which remains constant during iterations

where the column vector defines the unknown locations on the path normal to the arc-length.

The equations are typically solved by splitting ∆𝒖𝑖 in Eq. (16) into two components ∆𝒖𝑖𝐼 and ∆𝒖𝑖𝐼𝐼, which are obtained based on known vector 𝑭 and residual 𝑹𝑖 at state 𝒖𝑖. The purpose of

this two-stage solution procedure is to maintain symmetry of the Jacobian or tangent stiffness

matrix 𝑲 [3]. Calculation of the ∆𝒖𝑖 components is done by the following steps where ∆𝜆𝑖 is

temporarily set to one. 𝑲𝑖∆𝒖𝑖𝐼 = 𝑭 (18) 𝑲𝑖∆𝒖𝑖𝐼𝐼 = 𝑹𝑖 (19)

Vector ∆𝒖𝑖𝐼𝐼 is based on the residual 𝑹𝑖 and can be thought of as a predictor for the next value of ∆𝒖𝑖, where ∆𝒖𝑖𝐼 is a corrector to bring calculated points back to the iteration path. Scalar ∆𝜆𝑖
must later be used in combination with ∆𝒖𝑖𝐼 when recombining terms back into ∆𝒖𝑖. Graphical

www.manaraa.com

48

depiction of ∆𝒖𝑖𝐼 and ∆𝒖𝑖𝐼𝐼 and how they relate to the arc-length and normal iteration path are

shown in Fig. 9 and Fig. 10 where the index 𝑖 = 0 refers to the known or starting equilibrium

point, 𝑖 = 1 the first iteration point, 𝑖 = 2 the second and so on. Labeled points correspond to ①

for the point located at the end of the arc-length and start of the iteration path, ② for the

predicted value of ∆𝒖𝑖 using ∆𝒖𝑖𝐼𝐼, and ③ for the corrected value of ∆𝒖𝑖 using ∆𝒖𝑖𝐼 and ∆𝜆𝑖.

Figure 9. Points on normal iteration path for single-degree-of-freedom system

www.manaraa.com

49

Figure 10. Components of ∆𝒖𝑖 for single-degree-of-freedom system

The term ∆𝒖𝑖∗ in Fig. 10 is solved using similar triangles and shows how ∆𝜆𝑖 combines

with ∆𝒖𝑖𝐼 to bring ∆𝒖𝑖 back to the iteration path. Scalar ∆𝜆 was previously set to one for

determination of ∆𝒖𝑖𝐼 such that length ratios of equivalent triangles can be used to solve for ∆𝒖𝑖∗
by ∆𝒖𝑖∗∆𝜆𝑖 = ∆𝒖𝑖𝐼1 (20)

∆𝒖𝑖∗ = ∆𝜆𝑖∆𝒖𝑖𝐼 (21)

Observe on Fig. 9 how ∆𝒖𝑖𝐼𝐼 overshoots ∆𝒖𝑖 requiring ∆𝒖𝑖∗ or scaled ∆𝒖𝑖𝐼 to bring calculated

points back to the iteration path. Combining ∆𝒖𝑖𝐼 and ∆𝒖𝑖𝐼𝐼 terms back into ∆𝒖𝑖 is done by

adding the ∆𝒖𝑖𝐼𝐼 and ∆𝒖𝑖∗ terms where ∆𝜆𝑖 scales ∆𝒖𝑖𝐼 accordingly. ∆𝒖𝑖 = ∆𝒖𝑖𝐼𝐼 + ∆𝜆𝑖∆𝒖𝑖𝐼 (22) ∆𝜆𝑖 can now be solved using Eq. (17) where ∆𝒖𝑖 is rewritten in terms of Eq. (22). The resulting

expression for ∆𝜆𝑖 after the substitution is

∆𝜆𝑖 =
−∆𝒖0𝑇∆𝒖𝑖𝐼𝐼∆𝒖0𝑇∆𝒖𝑖𝐼+∆𝜆0 (23)

www.manaraa.com

50

where the negative sign for the expression becomes part of Eq. (22) for the final differencing of

the ∆𝒖𝑖𝐼𝐼 and scaled ∆𝒖𝑖𝐼 terms.

The goal of the arc-length method is to minimize the ∆𝜆𝑖 and ∆𝒖𝑖 terms through an

iterative process similar to the Newton-Raphson method. Once these terms are known,

convergence is checked against a user-specified error tolerance. If convergence criteria are met,

iterations are stopped and equilibrium or the solution is considered found. If not, 𝒖𝑖 and 𝜆𝑖 are

updated using Eq. (14) and Eq. (15) and the process is repeated. The following procedure in

Subsection 4.3.1.1 summarizes the arc-length method on a normal path.

4.3.1.1 STEPWISE PROCEDURE FOR ARC-LENGTH METHOD ON NORMAL PATH

1. Specify an arc-length 𝐿 to establish a search range for solutions away from a known or

guessed point (𝒖𝑖, 𝜆𝑖). Use iteration count 𝑖 = 0 to begin the process.

2. Calculate the tangent stiffness matrix 𝑲𝑖 at state 𝒖𝑖.
3. Find the sign of the matrix determinant of 𝑲𝑖 to determine the slope of the tangent plane.

4. Solve for ∆𝒖0 and ∆𝜆0 using Eq. (12) and Eq. (13).

5. Find the point at the end of the arc-length or start of the iteration path using Eq. (14) and

Eq. (15).

6. Calculate system vector 𝒇(𝒖𝑖) and tangent stiffness 𝑲𝑖 at the new state 𝒖𝑖 where 𝑖 is

updated for the next iteration count.

7. Determine the residual where 𝑹𝑖 = 𝜆𝑖𝑭 − 𝒇(𝒖𝑖).
8. Calculate ∆𝒖𝑖𝐼 where ∆𝒖𝑖𝐼 = 𝑲𝑖−1𝑭.

9. Calculate ∆𝒖𝑖𝐼𝐼 where ∆𝒖𝑖𝐼𝐼 = 𝑲𝑖−1𝑹𝑖.

www.manaraa.com

51

10. Calculate ∆𝒖𝑖 and ∆𝜆𝑖 using Eq. (22) and Eq. (23).

11. Check if ∆𝒖𝑖 is small with respect to 𝒖𝑖 and ∆𝜆𝑖 is small with respect to 𝜆𝑖. This test may

be done by taking the ratio of vector norms and seeing if they are less than a given user-

specified error tolerance. Are ‖∆𝒖𝑖‖/‖𝒖𝑖‖ and |∆𝜆𝑖|/|𝜆𝑖| less than the specified error

tolerance?

12. If yes, stop, the solution has been obtained; otherwise, update the iteration count and

estimates for 𝒖𝑖 and 𝜆𝑖 to improved values using Eq. (14) and Eq. (15) and repeat the

procedure starting with step 6.

13. If a solution has been obtained and search for other nearby solutions is desired as part of

a path following procedure, restart the procedure beginning with step 1. Use the

previously found solution as an initial guess. Arc-length 𝐿 can be held constant or

reduced in length as needed for restart in the event of convergence failure.

4.3.2 ARC-LENGTH METHOD USING CIRCULAR ITERATION PATH

Use of a circular path for iterations versus a normal path requires modification of

constraint Eq. (17). This path may also be referred to as a sphere or hypersphere. The arc-length 𝐿 must be included in the constraint as it defines the radius of the circular path that remains

constant during iterations and centered at point (𝒖0, 𝜆0). The process begins by defining the arc-

length radius as a vector where

𝒓0 = {∆𝒖0∆𝜆0} (24)

Components of 𝒓0 are found using Eq. (12) and Eq. (13) for iteration count 𝑖 equal to zero. The

point located at the end of 𝒓0 or (𝒖1, 𝜆1) defines the start of the iteration path, which is similar to

www.manaraa.com

52

the previous method. Corresponding points on the circular iteration path are then located using

the current radius and to be determined incremental changes in 𝒖 and 𝜆.

𝒓𝑖+1 = 𝒓𝑖 + {∆𝒖𝑖+1∆𝜆𝑖+1} = {𝒓𝑖1 + ∆𝒖𝑖+1𝑟𝑖2 + ∆𝜆𝑖+1 } (25)

The constraint equation for the circular path is based on the constant magnitude of vector 𝒓 or

arc-length 𝐿 and is defined using the dot product as 𝒓𝑖+1 ∙ 𝒓𝑖+1 = 𝐿𝑖2 (26)

or (𝑟𝑖2 + ∆𝜆𝑖+1)2 + 𝒓𝑖1𝑇𝒓𝑖1 + 2𝒓𝑖1𝑇∆𝒖𝑖+1 + ∆𝒖𝑖+1𝑇∆𝒖𝑖+1 = 𝐿𝑖2 (27)

through substitution of Eq. (25). Arc-length 𝐿 can be written in terms of the sum of the squares

of vector components as 𝐿𝑖2 = 𝑟𝑖22 + 𝒓𝑖1𝑇𝒓𝑖1 (28)

Substituting Eq. (28) into Eq. (27) yields the resulting constraint equation used for the circular

iteration path. ∆𝜆𝑖+12 + 2𝑟𝑖2∆𝜆𝑖+1 + 2𝒓𝑖1𝑇∆𝒖𝑖+1 + ∆𝒖𝑖+1𝑇∆𝒖𝑖+1 = 0 (29)

This equation in conjunction with Eq. (16) are used to solve for the unknown incremental

changes in 𝒖 and 𝜆. Subscripts in Eq. (16) are updated to the 𝑖 + 1 iteration count for

compatibility with Eq. (29). 𝑲𝑖+1∆𝒖𝑖+1 = 𝑹𝑖+1 + ∆𝜆𝑖+1𝑭 (30)

Vector ∆𝒖𝑖+1 is broken into two components as was done for the method on a normal path using

Eq. (22) where subscripts are also updated. ∆𝒖𝑖+1 = ∆𝒖𝑖+1𝐼𝐼 + ∆𝜆𝑖+1∆𝒖𝑖+1𝐼 (31)

Substituting Eq. (31) into Eq. (29) yields the final expression for ∆𝜆𝑖+1, which is quadratic in the

unknown and having roots (∆𝜆𝑖+1)1 and (∆𝜆𝑖+1)2.

www.manaraa.com

53
 (1 + ∆𝒖𝑖+1𝐼 𝑇𝒖𝑖+1𝐼) ∆𝜆𝑖+12 + 2(𝑟𝑖2 + 𝒓𝑖1𝑇∆𝒖𝑖+1𝐼 + ∆𝒖𝑖+1𝐼 𝑇∆𝒖𝑖+1𝐼𝐼)∆𝜆𝑖+1 (32)

+ 2𝒓𝑖1𝑇∆𝒖𝑖+1𝐼𝐼 + ∆𝒖𝑖+1𝐼𝐼 𝑇∆𝒖𝑖+1𝐼𝐼 = 0

The correct value of ∆𝜆𝑖+1 is found by looking at the value of the angle between known vector 𝒓𝑖
and tentative vector 𝒓𝑖+1. Selection is made by choosing the value of ∆𝜆𝑖+1, which produces a

maximum value of the cosine between the two vectors such that the new vector is closest to the

current.

𝑐𝑜𝑠(𝜃) =
𝒓𝑖 ∙ 𝒓𝑖+1𝐿𝑖2 (33)

Once values of ∆𝜆𝑖+1 and ∆𝒖𝑖+1 have been determined, convergence is checked and

iterations are continued until a solution is found or specified criteria indicating divergence or

failure stops the process. Graphical representation for the first two iteration points is shown in

Fig. 11 and the procedure is summarized in Subsection 4.3.2.1. This method has an advantage

over the normal path as it will more likely intersect a solution curve or equilibrium path that

exhibits significant changes in slope for fixed values of arc-length. The disadvantage is the

possibility of complex roots in Eq. (32). Work arounds can involve reducing the arc-length and

repeating the procedure or switching to another variation of the method. For example, Ramm

[32] developed a method that uses an updated normal path that mimics a curve to avoid this

issue. However, complex roots were not a problem for cases studied with the exception of non-

equilibrium or guessed solutions used to initiate the procedure. In this case, the normal iteration

path could be used or new guesses supplied in an attempt to avoid complex roots. Another

strategy used for this study was to accept only the real component of a complex root and let the

algorithm proceed as if it were, in fact, real. In these initiation cases, complex roots were often

eliminated within several iterations and some intersecting point with a static solution curve was

www.manaraa.com

54

found. Although this strategy worked for these particular instances, it is probably best not to

accept complex roots and restart the solver for corresponding solutions as part of a path

following procedure.

The main differences in using either the normal or circular arc-length methods are

typically the location of the initial found point on a solution curve when using a similar initial

guess, and the spacing between points during path following. The circular method may tend to

space points more closely to one another due to the curved iteration path but this can always be

adjusted by specifying a larger value for arc-length. Both the circular and normal methods

worked well for generating solution curves in this chapter.

4.3.2.1 STEPWISE PROCEDURE FOR ARC-LENGTH METHOD ON CIRCULAR PATH

1. Specify an arc-length 𝐿 to establish a search range for solutions away from a known or

guessed point (𝒖𝑖, 𝜆𝑖). Use iteration count 𝑖 = 0 to begin the process.

2. Calculate the tangent stiffness matrix 𝑲𝑖 at state 𝒖𝑖.
3. Find the sign of the matrix determinant of 𝑲𝑖 to determine the slope of the tangent plane.

4. Solve for ∆𝒖0 and ∆𝜆0 using Eq. (12) and Eq. (13). Define vector 𝒓0 using Eq. (24).

5. Find the point at the end of the arc-length or start of the iteration path using Eq. (14) and

Eq. (15).

6. Calculate system vector 𝒇(𝒖𝑖+1) and tangent stiffness 𝑲𝑖+1 at state 𝒖𝑖+1 .

7. Determine the residual where 𝑹𝑖+1 = 𝜆𝑖+1𝑭 − 𝒇(𝒖𝑖+1).
8. Calculate ∆𝒖𝑖+1𝐼 where ∆𝒖𝑖+1𝐼 = 𝑲𝑖+1−1 𝑭.

9. Calculate ∆𝒖𝑖+1𝐼𝐼 where ∆𝒖𝑖+1𝐼𝐼 = 𝑲𝑖+1−1 𝑹𝑖+1.

www.manaraa.com

55

10. Calculate ∆𝒖𝑖+1 and ∆𝜆𝑖+1 using Eq. (31) and Eq. (32) for each root of ∆𝜆𝑖+1.

11. Define tentative vectors 𝒓𝑖+1 using Eq. (25). The new vector is chosen based on the

maximum value of the cosine with the previous vector using Eq. (33).

12. Check if ∆𝒖𝑖+1 is small with respect to 𝒖𝑖+1 and ∆𝜆𝑖+1 is small with respect to 𝜆𝑖+1.

This test may be done by taking the ratio of vector norms and seeing if they are less than

a given user-specified error tolerance. Are ‖∆𝒖𝑖+1‖/‖𝒖𝑖+1‖ and |∆𝜆𝑖+1|/|𝜆𝑖+1| less than

the specified error tolerance?

13. If yes, stop, the solution has been obtained; otherwise update estimates for 𝒖𝑖+1 and 𝜆𝑖+1

to improved values and repeat the procedure starting with step 6 where 𝑖 is updated for

the next iteration count. Updated values are obtained using Eq. (14) and Eq. (15) where

subscript 𝑖 is updated for the current or 𝑖 + 1 iteration count.

14. If a solution has been obtained and search for other nearby solutions is desired as part of

a path following procedure, restart the procedure beginning with step 1. Use the

previously found solution as an initial guess. Arc-length 𝐿 can be held constant or

reduced in length as needed for restart in the event of convergence failure.

www.manaraa.com

56

Figure 11. Points on circular iteration path for single-degree-of-freedom system

4.4 METHODS FOR DERIVING GOVERNING EQUATIONS

Governing equations for the pendulum and spring supported collapsible arch used in this

study were derived using Lagrange’s method or formulated using a method known as analytical

mechanics [52]. Lagrange’s equation may be written as 𝑑𝑑𝑡 (𝜕𝕃𝜕�̇�) −
𝜕𝕃𝜕𝒖 + 𝝓𝒖𝑇𝜦 = 𝑸 (34)

where Lagrangian 𝕃 is the difference between kinetic 𝑇 and potential 𝑉 energy for the system

being modeled. Constraint equations are concatenated in column vector 𝝓 where 𝝓 = 𝟎 and 𝝓𝒖

is the matrix of first-order partial derivatives with respect to components of state vector 𝒖

containing the generalized degrees-of-freedom. The vector of constraint forces or Lagrange

www.manaraa.com

57

multipliers are contained in vector 𝜦. Non-conservative forces such as friction, damping, or

applied forces are contained in vector 𝑸. Reducing differential terms in Eq. (34) to first-order

and appending constraints 𝝓 results in a set of differential and algebraic equations where Eq. (1)

is rewritten as 𝒇(𝒖, �̇�, 𝑡) = 𝟎 (35)

to include differential components of state vector 𝒖 and variable 𝑡, which represents time.

Differential elements �̇� cannot be separated from 𝒇 for this case, which is referred to as an

implicit set of equations. Ordinary differential equations (ODEs), on the other hand, are of the

form �̇� = 𝒇(𝒖, 𝑡) (36)

where 𝒇(𝒖, 𝑡) can be explicitly defined in terms of �̇�, which is referred to as an explicit set of

equations. DAEs can be thought of as an expanded form of ODEs where states 𝒖 have been

expanded into sets of redundant coordinates. DAEs for a single-degree-of-freedom pendulum

constrained to a plane for example would contain variables (𝑥, 𝑦, 𝜃) for both position and

orientation of the pendulum body where ODEs may only contain the variable 𝜃 for orientation,

which defines position as well. Conversion of DAEs to ODEs is possible through index

reduction where index is defined as the number of times select individual equations in Eq. (35)

must be differentiated to recover underlying ODEs. This process may not always be practical

and deriving DAEs for complex systems does have advantage over derivation of ODEs using

vector mechanics based on Newton’s laws. Derivation of DAEs for example is easily automated

for computer implementation whereas a vector approach for deriving ODEs requires significant

insight into manual construction of free body diagrams. DAEs in the form of Eq. (35) can be

solved using a Newton-Raphson solver. Convergence criteria inherent to the solver alleviates the

www.manaraa.com

58

need for small time steps needed to maintain accuracy for a dynamic solution. This behavior is

not the case for explicit ODE solvers where unknown future states are entirely a function of past

states 𝒖 and much smaller time steps are needed to avoid accumulation of error. Based on solver

type and parameter selection such as time step and error tolerance, solving DAEs can be faster

and contain less error as compared to solving similar ODE systems explicitly. An overview of

DAEs, ODEs, solution methods, index reduction, etc. can be found in Ref. [54].

The option for solving DAEs by Newton-Raphson is what makes arc-length methods a

natural extension as an equilibrium solver where �̇� or derivative terms are set equal to zero

leaving equations in the form of Eq. (1). Although DAEs could first be converted to ODEs for

additional solver options, computational expense for such a conversion can be significant.

Solving DAEs directly also has the advantage of minimizing the need for post processing of

solutions to recover variables of interest including the Lagrange multipliers, which are the

constraint forces for mechanical systems. A disadvantage of DAEs as compared to ODEs is that

eigenvalues of the Jacobian for a linearized state about equilibrium do not follow the same rules

for stability or natural frequency. Linearized ODE systems for example are considered stable if

the real, or real components of all eigenvalues are less than or equal to zero where the imaginary

component determines natural frequency [55]. This rule does not to apply to DAEs but patterns

for real or non-complex eigenvalues at stable states were noted for cases studied. Based on

literature review, straightforward stability rules using eigenvalues of linearized DAEs could not

be found. Stability assessment of DAEs in general appears to be an area of ongoing research

with recent work found in Ref. [56]. In this chapter, the quantity and type of eigenvalues for

DAEs linearized about candidate equilibrium states are reported and patterns are identified.

Numeric values are not reported as they have no physical meaning. However, stability

www.manaraa.com

59

assessment using eigenvalues is performed only after converting systems to ODEs. This

additional step is done to help further validate the proposed methodology using arc-length

solvers.

Unlike ODEs, solving of DAEs also requires an estimate for the Lagrange multipliers or

constraint forces as part of the initial conditions used to start the solver. Initial estimates for

these constraint forces can be based on an initial guess, arbitrary values such as all zeros or ones,

or obtained from an initial time step from a dynamic simulation assuming velocity for the

various components were small or near zero. They can also be obtained in a more exact sense

from what is referred to as an initial condition analysis in MSC ADAMS [53]. While all

methods worked for cases studied, this may not hold true for larger, more complex systems. As

is typical for any nonlinear equation solver, the better the initial guess, the more likely the solver

will converge to a solution. Providing an initial guess for the constraint forces would be the

simplest approach and could be followed by a single step dynamic solver attempt in the event of

static solver failure. Dynamic solvers would be more likely to converge to a solution for similar

sets of initial conditions as compared to static solvers as they inherently allow for rigid body

motion. The preferred method for determining the initial constraint forces, however, may be to

perform an initial condition analysis similar to ADAMS. In this case, the constraint equations

are used to formulate a constrained optimization problem to determine a consistent set of initial

states [12, 53]. This formulation is automatically done in ADAMS prior to starting any static or

dynamic solution procedure.

There may also be cases where DAEs contain redundant constraints. While traversing of

limit points that contain singular Jacobian matrices does not pose a problem for arc-length

solvers, Jacobian matrices, which are rank deficient, inherently ill conditioned, or singular from

www.manaraa.com

60

redundant constraints, would. MSC ADAMS solver for example does not tolerate redundant

constraints and will subjectively delete them when encountered [12]. This auto preprocessing

would imply time is better spent trying to eliminate redundant constraints manually from models

in lieu of trying to solve systems with these type constraints left in place. If redundant

constraints cannot easily be eliminated or path following of such a system were still desired, use

of a tensor solver coupled with a geometric constraint equation for a “tensor-arc-length” solver

may be an option. Though such a solver is not known to exist, tensor solvers do exist [24] and

have been incorporated into MSC ADAMS as advanced solver options for static equilibrium

[12]. These type solvers supplement the Newton-Raphson method with an approximation for the

Hessian matrix or matrix of second-order partial derivatives from a Taylor series expansion and

can handle cases where the Jacobian is singular or ill conditioned. Although optimization based

solvers such as those contained in MATLAB’s fsolve [15] routine are capable of handling

singular Jacobians as well and could be parameterized, path following would be difficult as 𝜆

would need to be specified. When 𝜆 is treated as known, solver restarts with new initial guesses

would be required at limit or turning points in solution curves and such solvers may have

tendency to jump between sections of solution curves causing discontinuities where multiple

solutions exist for given 𝜆.

4.5 SINGLE-DEGREE-OF-FREEDOM PENDULUM

Equations for the single-degree-of-freedom pendulum shown in Fig. 12 being derived in

Ref. [53] using Lagrange’s method are

www.manaraa.com

61

𝒇(𝒖, �̈�) = { 𝑚�̈� + 𝛬1𝑚�̈� + 𝛬2 +𝑚𝑔𝐼𝐶𝑀�̈� + 𝛬1𝑙𝑠𝑖𝑛(𝜃) − 𝛬2𝑙𝑐𝑜𝑠(𝜃)} = 𝟎 (37)

State vector 𝒖 = [𝑥, 𝑦, 𝜃, 𝛬1, 𝛬2]𝑇where (𝑥, 𝑦) denote position, orientation is 𝜃, 𝑚 represents

pendulum mass, mass moment of inertia 𝐼𝐶𝑀 is with respect to the pendulum center of mass

(𝐶𝑀), and 𝑔 designates gravity. Point 𝐴𝑥,𝑦 locates the pendulum pivot constraint relative to a

global reference frame and 𝑙 is the distance from pivot 𝐴𝑥,𝑦 to 𝐶𝑀. Constraint forces 𝛬1, 𝛬2 are

in the 𝑥 and 𝑦 coordinate directions respectively. Specific values for constants in this case are 𝑙 = 0.127 𝑚, 𝑔 = 9.807 𝑚/𝑠2, 𝑚 = 0.4536 𝑘𝑔, and 𝐼𝐶𝑀 = 2.463𝑥10−3 𝑘𝑔 ∙ 𝑚2.

Figure 12. Single-degree-of-freedom pendulum

Constraint equations need to be appended to Eq. (37) and second-order derivatives

reduced to first-order such that equations can be solved using the Newton-Raphson method.

New variables 𝑢 = �̇�, 𝑣 = �̇�, and 𝑤 = �̇� are introduced which results in the final form of the

DAEs where expanded state vector 𝒖 = [𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝜃, 𝛬1, 𝛬2]𝑇. Note that non-bolded 𝑢 refers

to the x component of velocity whereas bolded 𝒖 refers to the state vector, which includes 𝑢 and

remaining system variables. System equations are

www.manaraa.com

62

𝒇(𝒖, �̇�) =
{

 𝑚�̇� + 𝛬1𝑚�̇� + 𝛬2 +𝑚𝑔𝐼𝐶𝑀�̇� + 𝛬1𝑙𝑠𝑖𝑛(𝜃) − 𝛬2𝑙𝑐𝑜𝑠(𝜃)�̇� − 𝑢�̇� − 𝑣�̇� − 𝑤𝑥 − 𝐴𝑥 − 𝑙𝑐𝑜𝑠(𝜃)𝑦 − 𝐴𝑦 − 𝑙𝑠𝑖𝑛(𝜃) }

 = 𝟎 (38)

The sparse nature of Eq. (38) due to redundant coordinates (𝑥, 𝑦), which are functions of 𝜃, is

noted as seven of the eight equations contain only two variables each and the eighth equation

contains four variables. This sparsity will also lead to a considerable amount of zeroes in the

Jacobian or 𝑲 matrix of 𝒇(𝒖, �̇�). The static solution to Eq. (38) requires all velocity and

acceleration terms be set and equal to zero where 𝒇(𝒖, 𝟎) = 𝒇(𝒖) = 𝟎. This requirement

contributes further to sparsity and provides the final format of equations used by the arc-length

method in search of equilibrium.

4.5.1 RESULTS FOR SINGLE-DEGREE-OF-FREEDOM PENDULUM

Solution curves produced by the arc-length solver where point 𝐴𝑥,𝑦 was set to (0,0) are

shown in Fig. 13. Curves were constructed using four runs of the solver in finite loops of 75

iterations each. Arc-length parameter 𝐿 was set to plus and minus one for this case. The solver

was initiated using pendulum initial conditions 𝜃 = 45 𝑑𝑒𝑔, 𝑥 = 𝑙𝑐𝑜𝑠(𝜃), and 𝑦 = 𝑙𝑠𝑖𝑛(𝜃).
Guessed values were provided for 𝜆 where the objective for finding equilibrium is the 𝜆 equals to

zero solution. A guessed value of 𝜆 equal to zero produced the solution curve with the zero-

crossing at state B where a guessed value of 𝜆 equal to -10 produced the curve containing state

A. Varying 𝜆 is what allows arc-length solvers to search for any scalar solution that satisfies the

www.manaraa.com

63

governing equations and essentially “sweeps” the variable space in search of solution curves.

Once a starting point or arbitrary scalar solution is found, the arc-length parameter 𝐿 is used to

control spacing or search for adjacent points used to construct curves. Specifying a positive or

negative sign for 𝐿 controls the slope or direction in which the search is initially performed. By

running the solver through a loop, curves were readily produced by plotting found points in the

plus and minus 𝜆 directions. Keeping the 𝐿 parameter relatively small helps the solver to trace

curves as they turn or change direction. Curves remained open in this case such that a path

between candidate equilibrium states via a single solution curve does not exist. Continued

plotting of points in the plus and minus 𝜆 directions would reveal asymptotic limits of curves

towards vertical axes implying an intersection of parallel surfaces in the multi-dimensional

space. Blue dots are used for positive 𝜆 values where red dots are used for negative 𝜆.

Two candidate equilibrium states A and B for 𝜆 equals zero that satisfy static Eq. (38) are

noted on Fig. 13. If the initial condition for the pendulum were specified close to the upward

pointing vertical configuration, a Newton-Raphson solver was found to converge to an angle of 𝜋/2 or state A. Although this solution numerically satisfies equations for equilibrium, the

system configuration is unstable. State B, on the other hand, places the pendulum at an angle of −𝜋/2, which is the physically stable downward pointing configuration.

 The path following procedure used for identifying these static equilibrium states is based

on the assumption that equations representing multi-body systems have an unknown number of

static solution curves and that each of these curves contains a finite number of roots. Guessed

values of 𝜆 and arc-length 𝐿 used in combination with initial conditions for state variables are

used to start the procedure with the objective of finding any point or solution on a given solution

curve. Once an arbitrary point is found, arc-length is then specified as part of a path following

www.manaraa.com

64

procedure to control spacing between points and to construct the solution curve to identify the

candidate equilibrium roots or 𝜆 equal to zero solutions. A more systematic approach for

searching for the starting or arbitrary solution point could involve holding a guess for 𝜆 constant

while varying arc-length for purpose of scaling a circular iteration path to cover an ever

increasing range of variables. Note that geometrically this circular constraint corresponds to a

hyperspherical constraint in multi-dimensional space [35]. The center point of the circle or

hypersphere would then remain constant while the arc-length parameter scales the size of the

hypersphere, which spans a given volume of hyperspace. Alternately, 𝜆 could be varied while

holding arc-length constant, which will essentially move the center location of the hypersphere

throughout the hyperspace. In the event there is only a single solution curve, such strategies will

only tend to vary the location of the initial found point on the curve. If multiple solution curves

exist, varying these parameters will help increase the likelihood that the additional curves are

found.

 There is no guarantee that the proposed procedure would identify all candidate

equilibrium states as uncertainty would remain as to whether all possible solution curves

containing a finite number of roots have been found. However, this uncertainty would be less as

compared to state-of-practice solution methods that limit searches to 𝜆 equal to zero solutions

only and require a good initial guess to converge to what is likely the closest proximity solution

if possible. In general, there would be increased confidence that all candidate equilibrium states

have been found through construction of solution curves and knowledge of the physical bounds

or limits of state variables where roots or candidate states may be found through intersection

with the 𝜆 equal to zero axis.

www.manaraa.com

65

Figure 13. Solution curves for single-degree-of-freedom pendulum

A quantitative approach based on evaluation of potential energy can also be used for

selecting true equilibrium in cases that may not be easily understood. A ground reference frame

located below the pendulum center of mass would provide for a positive measure in height for

comparison of energy between the two states. State B would be selected as it represents the state

of lowest energy for the pendulum. An alternative to using energy for selection of equilibrium

would be to assess eigenvalues for the linearized system about each state. The quantity and type

of eigenvalues of the Jacobian for the two states using DAEs in Eq. (38) are in Table 1. Both

equilibrium states A and B include positive real components indicating that stability rules for

ODEs do not apply. While both states contain a mixture of complex conjugate and real

eigenvalues, only state B has no positive or all negative real eigenvalues. This DAE eigenvalue

pattern will be shown to remain consistent for stable configurations for the remaining cases

studied. Stability rules based on this pattern are not generally implied and are considered as

future work or outside of the scope of this dissertation, but the pattern could be used as an

𝜆 B A

www.manaraa.com

66

indicator for stability where final determination would be made using eigenvalues from a similar

ODE system. By converting DAEs to an ODE format, established rules using eigenvalues for

assessment of stability can be applied.

Table 1

Pendulum DAE eigenvalue quantity

Type State A State B

+Re 1 0

−Re 3 2

+Re ± Im 2 3

Conversion of Eq. (38) to ODE format for assessment of eigenvalues is done by twice

differentiating the constraints or the last two equations 𝑓7, 𝑓8 in the set. Results of the

differentiation in column form are

{
 𝑥 = 𝐴𝑥 + 𝑙𝑐𝑜𝑠(𝜃)�̇� = 𝑢 = −𝑙𝑠𝑖𝑛(𝜃)�̇� = −𝑙𝑠𝑖𝑛(𝜃)𝑤�̈� = �̇� = −𝑙𝑐𝑜𝑠(𝜃)𝑤2 − 𝑙𝑠𝑖𝑛(𝜃)�̇�𝑦 = 𝐴𝑦 + 𝑙𝑠𝑖𝑛(𝜃)�̇� = 𝑣 = 𝑙𝑐𝑜𝑠(𝜃)�̇� = 𝑙𝑐𝑜𝑠(𝜃)𝑤�̈� = �̇� = −𝑙𝑠𝑖𝑛(𝜃)𝑤2 + 𝑙𝑐𝑜𝑠(𝜃)�̇�}

 (39)

These equations are substituted into Eq. (38) eliminating individual equations𝑓4, 𝑓5, 𝑓7, 𝑓8.

Defining constraint forces 𝛬1 and 𝛬2 in terms of the first two equations 𝑓1, 𝑓2 in Eq. (38)

eliminates these equations as well resulting in the following first-order ODE set.

𝒇(𝒖) = {(𝐼𝐶𝑀 +𝑚𝑙2)�̇� + 𝑚𝑔𝑙𝑐𝑜𝑠(𝜃)�̇� − 𝑤 } = 𝟎 (40)

Note how the mass moment of inertia includes the additional 𝑚𝑙2 term to account for the missing

constraint equations as 𝐼𝐶𝑀 is defined relative to the pendulum center of mass and not pivot point 𝐴𝑥,𝑦. Equilibrium states in Eq. (40) can be found be setting derivative terms �̇� and �̇� to zero and

www.manaraa.com

67

solving the static problem. Values of ±𝜋/2 for 𝜃 provides the solution for 𝒇(𝒖) = 𝟎 and are

similar to the results found by the arc-length solver using the DAEs.

Evaluation of eigenvalues for stability requires conversion of equations to state form

followed by linearization about the candidate equilibrium states. The state or explicit form of

Eq. (40) is

{�̇��̇�} = { 𝑤−𝑚𝑔𝑙𝑐𝑜𝑠(𝜃)/(𝐼𝐶𝑀 +𝑚𝑙2)} (41)

where the state vector is defined as 𝒖 = [𝜃, 𝑤]𝑇 and equilibrium states are 𝒖𝐴 = [𝜋/2,0]𝑇, 𝒖𝐵 =[−𝜋/2,0]𝑇. Linearization of Eq. (41) through Taylor series expansion results in

{ �̇� − �̇�𝑆�̇� − �̇�𝑆} = [0 1𝑚𝑔𝑙𝑠𝑖𝑛(𝜃𝑆)/(𝐼𝐶𝑀 +𝑚𝑙2) 0] { 𝜃 − 𝜃𝑆𝑤 − 𝑤𝑆} (42)

where subscript S refers to a specific state being A or B in this instance. Term 𝒇(𝒖𝑆) is not

shown in the expansion as terms are zero at equilibrium. Eq. (42) represents a linear state space

model for the pendulum where stability analysis using eigenvalues of the Jacobian or system

matrix may be performed. Eigenvalues are reported in Table 2.

Table 2

Pendulum ODE eigenvalues, Re ± Im (Hz)

State A State B

 1.2097 0 + 1.2097i

–1.2097 0 – 1.2097i

These eigenvalues can be used for assessment of stability based on rules in Ref. [55] when they

fall in a complex plane of real and imaginary axes. State A for the upward pointing

configuration is unstable due to a positive real value where the zero real values for the complex

conjugate roots in state B indicate a stable configuration with a natural frequency of 1.2097 Hz

www.manaraa.com

68

for small displacements about equilibrium. Selection of state B for equilibrium using

eigenvalues is seen to provide similar results to those obtained using energy.

4.6 SPRING SUPPORTED ARCH

The next system studied was the spring supported arch shown in Fig. 14. Both the

collapsing and non-collapsing cases were evaluated by varying spring constant 𝑘𝑠. Spring

constants were set to 17.5 𝑁/𝑚 and 87.6 𝑁/𝑚 for the two cases respectively. Bars are under the

influence of gravity and mass and geometry of the bars are similar to the pendulum. Point 𝐴𝑥,𝑦

represents a pinned connection to ground, 𝐵𝑥,𝑦 is the center of mass of bar one with position (𝑥1, 𝑦1) and orientation 𝜃1, 𝐶𝑥,𝑦 is the pinned connection between bar one and bar two, 𝐷𝑥,𝑦 is

the center of mass of bar two with position (𝑥2, 𝑦2) and orientation 𝜃2, and 𝐸𝑥,𝑦 is a pin-slider

connection attached to ground. One end of the spring is attached to ground while the other end

attaches to the slider connection at 𝐸𝑥,𝑦. Constraint forces 𝜦 are broken into components and

located at each joint. Vector notation for bar one shows how points in the system can be

referenced relative to a global reference frame or ground. Vectors are not shown for other points

for purpose of clarity on the figure.

www.manaraa.com

69

Figure 14. Spring supported arch

The Lagrangian 𝕃 for the system is 𝕃 = 𝑇 − 𝑉 (43) 𝑇 = 0.5𝑚(�̇�12 + �̇�12 + �̇�22 + �̇�22) + 0.5𝐼𝐶𝑀(�̇�12 + �̇�22) 𝑉 = 𝑚𝑔(𝑦1 + 𝑦2) + 0.5𝑘𝑠(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0)2

which accounts for kinetic energy from translation and rotation of the bars, potential energy of

the bars from gravity, and strain or potential energy from displacement of the free end of the

spring with an initial position of 𝐸𝑥0. The three constraints can be expressed in vector format as �⃗⃗� + 𝑩𝑨⃗⃗⃗⃗⃗⃗ = �⃗⃗� (44) �⃗⃗� + 𝑫𝑪⃗⃗⃗⃗⃗⃗ + 𝑪𝑩⃗⃗⃗⃗⃗⃗ = �⃗⃗� �⃗⃗� + 𝑬𝑫⃗⃗⃗⃗⃗⃗ = �⃗⃗�
and further broken into components for obtaining an expression for 𝝓. The first two expressions

in Eq. (44) are broken into their 𝑥 and 𝑦 components where only the 𝑦 component is required for

point 𝐸 in the third expression as the end of bar two is unconstrained in the 𝑥 direction. Setting

www.manaraa.com

70

vertical displacement 𝐸𝑦 equal to zero for the horizontal slider constraint and breaking Eq. (44)

into 𝑥 and 𝑦 components results in

𝝓 = {
 𝑥1 − 𝑙𝑐𝑜𝑠(𝜃1) − 𝐴𝑥𝑦1 − 𝑙𝑠𝑖𝑛(𝜃1) − 𝐴𝑦(𝑥2 − 𝑥1) − 𝑙(𝑐𝑜𝑠(𝜃2) + 𝑐𝑜𝑠(𝜃1))(𝑦2 − 𝑦1) − 𝑙(𝑠𝑖𝑛(𝜃2) + 𝑠𝑖𝑛(𝜃1))𝑦2 + 𝑙𝑠𝑖𝑛(𝜃2) }

 (45)

Inserting Lagrangian 𝕃 in Eq. (43) and constraints 𝝓 in Eq. (45) into Lagrange’s equation Eq.

(34) where 𝑸 is a vector of zeroes provides for the following equation set used to describe the

system. The state vector 𝒖 for the two links and constraint force vector 𝜦 are defined as 𝒖 = [𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜃1, 𝜃2]𝑇and 𝜦 = [𝛬11, 𝛬21, 𝛬12, 𝛬22, 𝛬23]𝑇 at this point in the derivation.

𝒇(𝒖, �̈�) =
{

 𝑚�̈�1 + 𝛬11 − 𝛬12𝑚�̈�1 + 𝛬21 − 𝛬22 +𝑚𝑔𝑚�̈�2 + 𝑘𝑠(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0) + 𝛬12𝑚�̈�2 + 𝛬22 + 𝛬23 +𝑚𝑔𝐼𝐶𝑀�̈�1 + 𝑙(𝛬11 + 𝛬12)𝑠𝑖𝑛(𝜃1) − 𝑙(𝛬21 + 𝛬22)𝑐𝑜𝑠(𝜃1)𝐼𝐶𝑀�̈�2 + 𝑙(𝛬12𝑠𝑖𝑛(𝜃2) − 𝛬22𝑐𝑜𝑠(𝜃2) + 𝛬23𝑐𝑜𝑠(𝜃2)) + ⋯⋯− 𝑘𝑠𝑙(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0)𝑠𝑖𝑛(𝜃2) }

 = 𝟎 (46)

Reducing the system to first-order through introduction of variables 𝑢𝑗 = �̇�𝑗, 𝑣𝑗 = �̇�𝑗 and 𝑤𝑗 = �̇�𝑗
where subscript 𝑗 = 1,2 for each bar and appending constraints 𝝓 in Eq. (45) results in the

following set of DAEs. The seventeen by one state vector is now defined as 𝒖 =[𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑤1, 𝑤2, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜃1, 𝜃2, 𝛬11, 𝛬21, 𝛬12, 𝛬22, 𝛬23]𝑇

www.manaraa.com

71

𝒇(𝒖, �̇�) =

{

 𝑚�̇�1 + 𝛬11 − 𝛬12𝑚�̇�1 + 𝛬21 − 𝛬22 +𝑚𝑔𝑚�̇�2 + 𝑘𝑠(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0) + 𝛬12𝑚�̇�2 + 𝛬22 + 𝛬23 +𝑚𝑔𝐼𝐶𝑀�̇�1 + 𝑙(𝛬11 + 𝛬12)𝑠𝑖𝑛(𝜃1) − 𝑙(𝛬21 + 𝛬22)𝑐𝑜𝑠(𝜃1)𝐼𝐶𝑀�̇�2 + 𝑙(𝛬12𝑠𝑖𝑛(𝜃2) − 𝛬22𝑐𝑜𝑠(𝜃2) + 𝛬23𝑐𝑜𝑠(𝜃2)) + ⋯⋯− 𝑘𝑠𝑙(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0)𝑠𝑖𝑛(𝜃2)�̇�1 − 𝑢1�̇�1 − 𝑣1�̇�2 − 𝑢2�̇�2 − 𝑣2�̇�1 − 𝑤1�̇�2 − 𝑤2𝑥1 − 𝑙𝑐𝑜𝑠(𝜃1) − 𝐴𝑥𝑦1 − 𝑙𝑠𝑖𝑛(𝜃1) − 𝐴𝑦(𝑥2 − 𝑥1) − 𝑙(𝑐𝑜𝑠(𝜃2) + 𝑐𝑜𝑠(𝜃1))(𝑦2 − 𝑦1) − 𝑙(𝑠𝑖𝑛(𝜃2) + 𝑠𝑖𝑛(𝜃1))𝑦2 + 𝑙𝑠𝑖𝑛(𝜃2) }

= 𝟎 (47)

The equation set was verified through dynamic simulation using a previously developed

nonlinear solver suite written in MATLAB [51] and commercial software MSC ADAMS. Initial

conditions for the bars were similar to Fig. 14 where 𝜃1 was set to 45 degrees and 𝜃2 to -45

degrees with zero initial rates. Point 𝐴𝑥,𝑦 was set to the origin or (0,0) coordinate. Results for

the x position of bar one versus time are shown in Fig. 15 and Fig. 16 for the collapsing and non-

collapsing cases where MATLAB and ADAMS results are coincident giving the appearance of a

single curve. Both the MATLAB and ADAMS solvers used a Newton-Raphson method where

results for the simulation were found using a time step of 0.0005 seconds. Fig. 15 for the

collapsing case shows bar one snapping through to an inverted orientation with the 𝐶𝑀 swinging

past point 𝐴𝑥,𝑦 in the horizontal axis, reversing direction, and snapping back past its original

configuration in an oscillatory manner. Fig. 16, on the other hand, shows bar one oscillating

www.manaraa.com

72

about a much smaller displacement as spring force is sufficient to prevent collapse from

occurring.

Figure 15. Dynamic simulation of collapsing arch

Figure 16. Dynamic simulation of non-collapsing arch

www.manaraa.com

73

Candidate equilibrium states for the collapsing and non-collapsing cases were also

verified using ADAMS and compared to those found using static solution curves produced by

arc-length solvers. State vectors are recorded in tables in the following results and discussion

sections. This recording was accomplished only after the list of candidate states obtained

through path following of static solution curves was complete. Once these states were known, a

similar ADAMS model was manually configured in sufficiently close proximity to each state

providing necessary initial conditions that would cause available static solvers to converge to the

desired configurations. A direct comparison of results for each state variable was then made to

confirm similarity. For the non-collapsing case, the as modeled configuration was in closest

proximity to true equilibrium such that the default Newton-Raphson solver in ADAMS

converged to this solution. The collapsing case, however, proved more challenging as all

Newton-Raphson based solvers failed while the more advanced solvers based on optimization

algorithms converged to unstable pre-collapse configurations when using default settings.

Failure of the Newton-Raphson solvers was due to several of the state variables having to pass

through limit points or change direction in order to reach the inverted configuration. The x

position of bar one on Fig. 15 for example must first increase from its initial configuration

towards the horizontal limit prior to snapping through and decreasing towards the inverted

configuration. Through trial and error, it was found that the ALIMIT parameter could be

adjusted under the ADAMS solver settings to increase the allowed value for incremental

displacement with respect to angular state variables. This setting enabled the solver to “jump

over” or past limit points in this case and locate equilibrium. Setting the value too high,

however, caused it to converge to other unstable configurations. Although such a procedure

www.manaraa.com

74

could be used, uncertainty would still remain as to whether true equilibrium was found and a

pictorial of solution curves with candidate equilibrium states at zero-crossings would also be

missing.

4.6.1 RESULTS FOR COLLAPSING ARCH

Solution curves for the collapsing case produced by an arc-length solver using MATLAB

are shown in Fig. 17 through Fig. 22. Plots were selected using position and orientation

information from the bar one center of mass although any one or all of the state variables could

have been selected. Multiple curves were identified for this case and were separated into two

plots each for clarity of figures. As previously mentioned, curves may exhibit non-physical

values for given variables at non-zero solutions for 𝜆. This behavior is due to the fact that only

the 𝜆 = 0 solutions are admissible for equilibrium while other values modify governing

equations by including the scalar value. Although the non-zero 𝜆 solutions satisfy equations

numerically, they are only used to construct static solution curves to follow or provide a path

from one state to another. This formulation left only scalers 𝜆 and arc-length 𝐿 as parameters

that could be varied as part of the initial guess used to start solvers. By varying these parameters,

initial found points at different locations on single curves or points on different curves could be

found. The solvers could not traverse what appeared to be limit points located at the 𝜆 = 20

axes on Fig. 17 and Fig. 18 and at the 𝜆 = −20 axes on Fig. 20 and Fig. 21 during path

following. These special points are asymptotic limits as new points could be continually found

without ever crossing the limit. Spacing between points also became smaller for every new point

found giving the appearance of a closed curve in these sectional views of hyperspace. In these

www.manaraa.com

75

cases, the solver could be restarted to trace the remainder of the curve in opposite direction by

changing the sign of arc-length 𝐿. Curves shown in Fig. 17 through Fig. 19 were traced in this

manner.

DAE eigenvalue quantity for candidate equilibrium states using Eq. (47) are in Table 3;

state vectors including the initial configuration specified as State I are in Table 4; strain or

potential energy for the spring are in Table 5. Potential energy due to gravity was not included

as it is altitude or elevation dependent and the datum for zero potential energy is arbitrary. If

elevation were large, potential energy due to gravity would dominate the magnitude of the

energy term and potentially mask or eliminate potential energy of the spring due to numerical

precision or the number of significant digits used to represent the quantity.

State vectors in Table 4 were truncated to eliminate the first six velocity terms, which are

zero for static solutions. Four candidate states A through D were found and identified on graphs.

States C and D are unique as they were not found in an exact sense by the arc-length solver but

implied graphically as locations for zero-crossings with bars in the vertical pointing down and up

configurations. The velocity terms for this case, or first six state variables, were approximately

zero but the vertical constraint forces significantly exceeded the weight of the mechanism for a

non-physical solution. Closer investigation of these points revealed that curves became

asymptotic as they approached the 𝜆 equals zero axis. The reciprocal of the matrix condition

number for the Jacobian also became increasingly small indicating near singularity or an ill

conditioned problem. Attempts to find an exact solution using MATLAB’s fsolve routine [15],

which is able to handle singularity of the Jacobian, also failed or produced warnings for possible

error. An additional solving attempt was made by manually specifying a state vector for the

exact geometric configurations of the implied solutions and inserting into 𝒇(𝒖). This strategy

www.manaraa.com

76

left equations containing velocity terms as non-zero further validating that an exact equilibrium

solution does not exist at these locations.

Figure 17. Solution curve for bar one x position, 𝑘𝑠 = 17.5 𝑁/𝑚

Figure 18. Solution curve for bar one y position, 𝑘𝑠 = 17.5 𝑁/𝑚

A

B

A

B

www.manaraa.com

77

Figure 19. Solution curve for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚

Figure 20. Additional solution curves for bar one x position, 𝑘𝑠 = 17.5 𝑁/𝑚

A

B

C, D

www.manaraa.com

78

Figure 21. Additional solution curves for bar one y position, 𝑘𝑠 = 17.5 𝑁/𝑚

Figure 22. Additional solution curves for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚

C
D

C D

www.manaraa.com

79

Table 3

Collapsing arch DAE eigenvalue quantity

Type State A State B State C* State D*

+Re 0 3 2 1

−Re 5 6 5 6

+Re ± Im 6 4 5 5

* Implied state

Table 4

Candidate equilibrium states for collapsing arch 1

Variable State I 2 State A State B State C* State D* 𝑥1(𝑚𝑚) 89.8017 69.1794 -125.6436 -0.4293 -0.3886 𝑦1(𝑚𝑚) 89.8017 -106.5047 18.5166 -127.0000 127.0000 𝑥2(𝑚𝑚) 269.4076 207.5383 -376.9284 -0.4293 -0.3886 𝑦2(𝑚𝑚) 89.8017 -106.5047 18.5166 -127.0000 127.0000 𝜃1(𝑟𝑎𝑑) 0.7854 -0.9947 2.9953 -1.5742 1.5739 𝜃2(𝑟𝑎𝑑) -0.7854 0.9947 3.2879 1.5674 -1.5677 𝛬11(𝑁) -2.6663 1.4448 15.0919 6.2907 6.2907 𝛬21(𝑁) -4.4482 -4.4482 -4.4482 1847.2492 -2035.2284 𝛬12(𝑁) -1.9999 1.4448 15.0919 6.2907 6.2907 𝛬22(𝑁) -0.6663 -0.0000 -0.0000 1851.6974 -2030.7802 𝛬23(𝑁) -3.1151 -4.4482 -4.4482 -1856.1456 2026.3319
1 Bar one x, y position and angle highlighted red
2 Initial configuration

* Implied state

Table 5

Strain energy (𝑁 ∙ 𝑚) for collapsing arch

State A State B State C* State D*

0.0596 6.5031 1.1298 1.1298

* Implied state

Candidate states C and D could be eliminated based on failure to provide an exact

solution. If this analysis had not been performed, they could, however, still be considered for

further assessment. Prior to making a selection for equilibrium from the candidate states, a

measure of how close the states are to the initial configuration was defined. A metric based on

www.manaraa.com

80

the difference ratio of vector norms was used by defining the initial state vector as 𝒖I and

candidate state vectors as 𝒖S where subscript “S” denotes the specific individual states and “I”

denotes the initial state. The resulting expression is 𝑟𝑎𝑡𝑖𝑜 = ‖𝒖I − 𝒖S‖/‖𝒖I‖ (48)

Difference ratios using Eq. (48) for states A through D are shown in Table 6.

Table 6

Difference ratios with respect to state I for collapsing arch

State A State B State C* State D*

0.9167 2.2149 10.3986 11.3990

* Implied state

Since A has the smallest ratio, it is closest to the as modeled initial configuration of the

arch. State A is therefore selected as the starting point for evaluation among the candidate states

with a strain energy of 0.0596 (𝑁 ∙ 𝑚). Moving towards state B along the solution curves

displayed using sectional plots in Fig 17 through Fig. 19 reveals an increase in strain energy such

that state B is rejected for A. Both states C and D are even further away from state A, having

higher strain energy and are also rejected. State A is therefore selected as equilibrium being

consistent with results obtained from a dynamic simulation with added damping in ADAMS.

Real eigenvalues using DAEs from Eq. (47) in Table 3 are shown to be all negative for state A

where rejected states include positive real eigenvalues. Patterns for complex conjugate pairs

show positive real component eigenvalues only.

Conversion of Eq. (47) to ODE format for stability assessment using eigenvalues uses a

similar approach as was done for the pendulum where constraint equations, 𝑓13 through 𝑓17 in

this case, are twice differentiated and substituted back into the equation set. The process can be

simplified by observing that 𝜃2 = −𝜃1 and 𝑦2 = 𝑦1from the constraints. This results in the

www.manaraa.com

81

following set of first-order ODEs written in explicit form. The state vector for the reduced

system is 𝒖 = [𝜃1, 𝑤1]𝑇.

 {�̇�1�̇�1} = { 𝑤1−4𝑚𝑙2sin (2𝜃1))𝑤12+8𝑘𝑠𝑙2𝑠𝑖𝑛(2𝜃1)−4𝐸𝑥0𝑘𝑠𝑙𝑠𝑖𝑛(𝜃1)− 2𝑚𝑔𝑙𝑐𝑜𝑠(𝜃1)(10𝑚𝑙2 − 8𝑚𝑙2𝑐𝑜𝑠2(𝜃1)+ 2𝐼𝐶𝑀) } (49)

Candidate equilibrium states are found by setting velocity and acceleration terms in Eq.

(49) to zero and solving for 𝜃1 in the remaining equation. 𝑓2(𝜃1) = 8𝑘𝑠𝑙2𝑠𝑖𝑛(2𝜃1) − 4𝐸𝑥0𝑘𝑠𝑙𝑠𝑖𝑛(𝜃1) − 2𝑚𝑔𝑙𝑐𝑜𝑠(𝜃1) = 0 (50)

Graphical representation of Eq. (50) plotted between ±𝜋 with similar found states to the original

DAE system is shown in Fig. 23. Implied states C and D that were previously dismissed do not

show up on this figure as zero-crossings further validating they are, in fact, not candidates for

equilibrium.

Figure 23. ODE static solution curve for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚

Eq. (49) is linearized about states 𝒖𝐴 = [−0.9947,0]𝑇, 𝒖𝐵 = [2.9953,0]𝑇 and eigenvalues are

reported in Table 7. Equations for the linearized system are not shown as was for the pendulum

A B

www.manaraa.com

82

due to the extensive algebraic expressions in the system matrix. Results were validated using

ADAMS by manually configuring the arch near the given states and running a Newton-Raphson

based equilibrium solver such that it would converge to the closest available equilibrium

configuration. A linearization was then performed; it output similar eigenvalues. The

linearization procedure used by ADAMS is based on a state space reduction method for reducing

the governing DAEs to a set of minimal states [57]. This approach essentially recovers the

underlying ODEs as redundant variables are eliminated and eigenvalues can then be used for

stability assessment and determination of natural frequency. State A is shown to be stable with a

natural frequency of 1.3741 Hz with state B being unstable. State A therefore represents true

equilibrium similar to the previous assessment using strain energy. Real DAE eigenvalues were

all negative for this state as an indicator for stability as well.

Table 7

Collapsing arch ODE eigenvalues, Re ± Im (Hz)

State A State B

0 + 1.3741i 3.0528

0 – 1.3741i –3.0528

4.6.2 RESULTS FOR NON-COLLAPSING ARCH

Solution curves for the non-collapsing case produced by an arc-length solver using

MATLAB are shown in Fig. 24 through Fig. 29. Figures showing a detailed view of the solution

centered near the 𝜆 equal to zero axis contain an additional section of curve that was left off of

the larger, complete solution plots for clarity of figures. Six candidate equilibrium states were

found where states E and F were implied zero-crossings similar to those in the previous case.

Although this case is somewhat trivial as the initial and resultant stable equilibrium

www.manaraa.com

83

configurations provide for a closest proximity solution for any nonlinear solver, plots produced

by the arc-length solver are unique and will help further validate the proposed procedure for

identifying equilibrium. DAE eigenvalue quantity, state vectors, strain energy stored in the

spring, and difference ratios of candidate states S with respect to initial state I are shown in

Tables 8 through 11 respectively.

Figure 24. Total solution curve for bar one x position, 𝑘𝑠 = 87.6 𝑁/𝑚

D E,F

A,B,C

www.manaraa.com

84

Figure 25. Partial solution curve for bar one x position, 𝑘𝑠 = 87.6 𝑁/𝑚

Figure 26. Total solution curve for bar one y position, 𝑘𝑠 = 87.6 𝑁/𝑚

D E,F
A B C

E
A

D
C

B F

www.manaraa.com

85

Figure 27. Partial solution curve for bar one y position, 𝑘𝑠 = 87.6 𝑁/𝑚

Figure 28. Total solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚

E
A

D C B F

D E A
C B F

www.manaraa.com

86

Figure 29. Partial solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚

Table 8

Non-collapsing arch DAE eigenvalue quantity

Type State A State B State C State D State E* State F*

+Re 0 0 1 3 2 1

−Re 5 5 6 6 5 6

+Re ± Im 6 6 5 4 5 5

* Implied state

D E

A

C

B

F

www.manaraa.com

87

Table 9

Candidate equilibrium states for non-collapsing arch 1
Variable State I

2
 State A State B State C State D State E* State F* 𝑥1(𝑚𝑚) 89.8017 84.1807 97.3887 124.9807 -126.9467 -1.4605 -1.9329 𝑦1(𝑚𝑚) 89.8017 -95.0925 81.5137 22.5603 3.7186 -126.9924 126.9848 𝑥2(𝑚𝑚) 269.4076 252.5446 292.1686 374.9396 -380.8374 -1.4630 -1.9279 𝑦2(𝑚𝑚) 89.8017 -95.0925 81.5137 22.5603 3.7186 -126.9924 126.9848 𝜃1(𝑟𝑎𝑑) 0.7854 -0.8462 0.6969 0.1786 -3.1709 -1.5823 1.5860 𝜃2(𝑟𝑎𝑑) -0.7854 0.8462 -0.6969 -0.1786 3.1709 -4.7239 -1.5555 𝛬11(𝑁) -2.6663 1.9688 -2.6574 -12.3211 75.9169 31.4543 31.4529 𝛬21(𝑁) -4.4482 -4.4482 -4.4482 -4.4482 -4.4482 2,726.4447 -2,066.9384 𝛬12(𝑁) -1.9999 1.9688 -2.6574 -12.3211 75.9169 31.4543 31.4529 𝛬22(𝑁) -0.6663 -0.0000 0.0000 0.0000 0.0000 2,730.8929 -2,062.4902 𝛬23(𝑁) -3.1151 -4.4482 -4.4482 -4.4482 -4.4482 -2,735.3412 2,058.0420

1 Bar one x, y position and angle highlighted red
2 Initial configuration

* Implied state

Table 10

Strain energy (𝑁 ∙ 𝑚) for non-collapsing arch

State A State B State C State D State E* State F*

0.0221 0.0403 0.8669 32.9097 5.6494 5.6490

* Implied state

Table 11

Difference ratios with respect to state I for non-collapsing arch

State A State B State C State D State E* State F*

0.8426 0.0860 0.4726 2.2655 15.2658 11.5164

* Implied state

Starting with the difference ratios in Table 11, state B is found to be in closest proximity

to the initial configuration state I. Solution curves in Fig. 24 through Fig. 29 show states in the

order of B-C-A-F and B-D-E when following the curves or paths on figures in either direction

when starting from state B. The arc-length solver was run four times to find arbitrary starting

values on curves and then run through a finite loop in the plus and minus arc-length directions to

www.manaraa.com

88

construct curves. Fig. 26 for example exhibits non-smooth or sharp portions to the curve that the

arc-length solver could not trace past. For these cases, the solver behaved as if near an

asymptotic limit as new points were continually found, but distance covered on the graph

became less and less. The smother, self-intersecting loop on Fig. 25, on the other hand, was

traced in a single run of the solver loop. Note that information on all figures is being solved

simultaneously as these are individual components of state vector 𝒖. Figures are essentially

sectional views with respect to individual states in the multi-dimensional space or hyperspace;

this is why they appear different from one another. States E and F are referred to as implied due

to the appearance of possible zero-crossings on figures. Reciprocals of the condition number of

the Jacobian for these states are very small indicating near singularity such that they are likely

asymptotic limits and not equilibrium states. As was done previously, both states are still

included as candidates for equilibrium.

The process of identifying equilibrium begins with state B, which is closest to the initial

configuration. Following the B-C-A-F path on solution curves, state C is found to have higher

strain energy such that it is rejected. The next state A has lower strain energy; however, the

system must first pass through the higher energy state C from the lower state B such that it too is

rejected. This conclusion is drawn on both understood physical behavior of the simple system

and through following the path from one state towards another on the solution curves. In a

physical sense, the bars would have to pass through the horizontal configuration prior to

snapping through to the inverted position. The gravity load in this case is not sufficient to

overcome spring force leaving the arch in a non-collapsing configuration. The next state F has

significantly higher strain energy, which eliminates this state as well. Remaining states are

evaluated by traveling in the opposite direction from state B on path B-D-E. Both D and E are of

www.manaraa.com

89

higher strain energy such that they are rejected. State B is therefore selected as equilibrium.

State A is noted as a physically admissible and stable equilibrium, although it would be

impossible to reach from the initial configuration without inclusion of additional force needed to

compress the spring. Note that by following the path between states on solution curves, rejection

of states C and D would eliminate any proceeding states as it is not possible to pass through

higher energy configurations without application of additional force. Similar to the case of the

collapsing arch, real eigenvalues using DAEs from Eq. (47) in Table 8 are shown to be all

negative for stable states A and B where rejected states include positive real eigenvalues.

Eq. (49) and Eq. (50) remain similar for the ODEs used to describe the system where

only spring constant 𝑘𝑠 is updated for the non-collapsing case. Graphical results for equilibrium

states using these equations are plotted in Fig. 30 with similar found states to the original DAE

system. The angle for state D is reported in a positive sense with the ±𝜋 limits of the plot. The

angle is reported in a negative sense for the DAE system in Table 9 but is, in fact, the same

angle. Plotting the static solution curve within these limits provides for a consistent order among

states when comparing the ODE and DAE systems. Implied states E and F do not show up as

zero-crossings further validating they are not candidates for equilibrium.

www.manaraa.com

90

Figure 30. ODE static solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚

Eigenvalues for the linearized states using the ODEs are shown in Table 12. These results were

also validated using ADAMS similar to the previous case. State B that was identified as

equilibrium and state A that was identified as physically possible for equilibrium are both shown

to be stable with natural frequencies of 2.0925 Hz and 2.6187 Hz respectively. Dismissed states

C and D are both shown to be unstable due to positive, real eigenvalues.

Table 12

Non-collapsing arch ODE eigenvalues, Re ± Im (Hz)

State A State B State C State D

0 + 2.6187i 0 + 2.0925i 2.5851 7.0582

0 – 2.6187i 0 – 2.0925i –2.5851 –7.0582

4.7 PROPOSED PROCEDURE FOR IDENTIFYING STATIC EQUILIBRIUM

Based on methods and results for the pendulum, collapsing arch cases, and non-collapsing

arch cases, the following procedure for identifying equilibrium for general systems is proposed.

A C

B D

www.manaraa.com

91

This procedure is based on path following of static solution curves for nonlinear systems of

equations being derived from and representing physics-based systems.

1. Select any single or a combination of state variables for plotting of static solution curves

using arc-length solvers.

2. Identify where solution curves cross the 𝜆 equal to zero axis and label these as candidate

equilibrium states accordingly.

3. Determine the difference ratios between the as modeled initial state I and found candidate

states S using Eq. (48). Choose the state with the smallest ratio as the initial candidate

equilibrium state for consideration.

4. If additional candidate equilibrium states are present on a solution curve, identify the

order in which states occur by following the curve or path in either direction starting from

the initial candidate state.

5. Using this order and starting with the initial candidate state, accept or reject remaining

states based on change in potential energy. States leading to an increase in potential

energy would be rejected along with any remaining states for a given direction along a

solution curve. New states would be accepted when leading to a decrease in potential

energy for a given direction along a solution curve. If a path between states does not

exist, consider all states simultaneously. Equilibrium is the state that reduces potential

energy to a minimum with respect to a given static solution curve or minimizes potential

energy in the event a relation among states via a solution curve does not exist.

6. Optionally convert equations to a linearized state space format and extract eigenvalues

for each individual state. These eigenvalues can be used as a secondary metric to verify

stability at the chosen equilibrium.

www.manaraa.com

92

4.8 CONCLUSIONS

Arc-length solvers were used to successfully identify the many possible equilibrium

states for nonlinear systems representing a pendulum and two variations of a spring supported

arch. Graphical representation of static solution curves was accomplished through plotting of

selected state variables against a common variable 𝜆. Crossings of solution curves at the 𝜆 equal

to zero axis identified candidate equilibrium states and gave insight into the overall quantity of

states. A difference ratio between the as modeled and candidate equilibrium configurations

provided for a metric to identify the starting or initial state for consideration. The order in which

states were evaluated was then established through following of solution curves from one state to

another. A procedure for selecting equilibrium using this order and requirement for reducing

potential energy was proposed and confirmed plausible for cases studied. Eigenvalues of the

linearized governing equations were used as a secondary metric to verify stability at the chosen

equilibrium states for each system. The quantity and type of eigenvalues of the Jacobian for

linearized DAEs was reported and patterns of all negative real or non-complex values were

shown to be an indicator for stability. Final determination of stability was made after conversion

of these equations to ODEs in state space format such that established rules using eigenvalues

could be applied. Governing equations, candidate equilibrium state vectors, and eigenvalues

from linearized ODEs were compared to those obtained using MSC ADAMS commercial

software for further validation. The proposed method for identifying equilibrium through path

following of static solution curves offers an alternative to dynamic simulation that includes

potential computational cost savings depending on system size and complexity. Identifying

www.manaraa.com

93

equilibrium in this manner is more robust than using single point solution procedures that may

converge to a state that numerically satisfies but does not physically represent equilibrium or

never achieves convergence, especially near limit points.

www.manaraa.com

94

CHAPTER 5

PARALLEL PROCESSING OF THE JACOBIAN

 Demonstrating speedup for parallel code on a multi-core shared memory PC can be

challenging in MATLAB due to underlying parallel operations that are often opaque to the user.

These hidden operations can limit potential for improvement of serial code even for the so-called

embarrassingly parallel applications. One such application is the computation of the Jacobian

matrix inherent to most nonlinear equation solvers. Computation of this matrix represents the

primary bottleneck in nonlinear solver speed such that commercial finite element analysis and

multi-body-dynamics codes attempt to minimize such computations. A timing study using

MATLAB’s Parallel Computing Toolbox [48] was performed for numerical computation of the

Jacobian [58]. Several approaches for implementing parallel code were investigated while only

the single program multiple data method (MATLAB’s command spmd) using composite objects

provided positive results. Parallel code speedup is demonstrated but the goal of linear speedup

through the addition of processors was not achieved due to PC architecture.

5.1 INTRODUCTION

Most PCs available on the market today come equipped with multi-core processors where

cores share a common memory [44,48]. Programming on these systems is typically done via

threading, which is a special case of an operating system process whereby threads share memory

[44]. Multithreading or Intel’s proprietary version called hyperthreading is also commonplace

www.manaraa.com

95

and allows for resource duplication within a given central processing unit core [44]. Such

computer architecture is what enables programming languages to exploit thread-parallel

operations. Use of this technology where parallel operations are carried out autonomously

without any user input or code modifications is often referred to as implicit [48] or multithreaded

parallelism [49] where such operations are an integral part of the software. MATLAB software

uses multithreaded parallelism by default for many of its trigonometric and linear algebraic

operations [48,49]. A partial list of these functions including linear equation solvers, matrix

factorization methods, etc. can be found on the MathWorks user support website [50]. This

default means serial versions of MATLAB code are typically running lower level parallel

operations that users may be unaware of and have little or no control over. These operations can

be validated in a qualitative sense through monitoring of the CPU usage history plots using

Windows Task Manager or a similar program. A small serial program run using an Intel Core i7

chip for example showed use of only a single processor, while a much larger or more

computationally intensive program showed use of all available processors. Although the

Windows Task Manager showed a total of eight available processors for this chip, it should be

noted that this is a quad-core processor with eight available threads meaning four of the

processors are non-physical. MATLAB still allows users to specify the number of threads being

used through the maxNumCompThreads command [15]. Warning has, however, been issued by

MathWorks that this feature will be removed in a future release, implying multithreading is the

intended normal software environment.

Even though MATLAB exploits use of multi-core processors for serial programming,

code can potentially be further improved for speed through use of the Parallel Computing

Toolbox [48]. This toolbox enables use of explicit parallelism where specific tasks can be

www.manaraa.com

96

directed to specific processors. Reference to underlying parallelism for serial code could not be

found in the Parallel Computing Toolbox documentation [15] while only a single reference to

“built-in parallelism provided by the multithreaded nature of many of the underlying MATLAB

libraries” was found in a later version. This lack of information may leave users unaware of

underlying parallelism in serial code leading to high expectations for speedup of parallel

versions. According to a professor who specializes in computer science, a common scenario of

first-time developers of parallel code is to find out it is actually slower than the serial version,

which he attributes to lack of understanding of how computer hardware works, at least at a high

level [44]. Establishing serial MATLAB or any computer code with underlying parallelism as

the de facto standard by which to gage parallel code performance can significantly add to the

challenge of achieving speedup. This character can be true even for the so-called embarrassingly

parallel applications as underlying parallelism may leave little room for code improvement.

Users should also be aware that unlike distributed memory systems, the addition of processors

for parallel computing on shared memory systems does not necessarily provide linear type

improvement for speedup where doubling the number of processors doubles computational speed

and so on.

MATLAB users who maintain or develop their own versions of nonlinear FEA or MBD

software codes may wish to speedup computations using the Parallel Computing Toolbox. For

Newton-Raphson based solvers, the major cost per iteration lies in computation of the Jacobian

matrix [1] where it is often referred to as the tangent stiffness matrix in the FEA literature.

Increasing the speed at which this computation is performed can have a dramatic effect on the

overall solution time, especially for dynamic simulations where the matrix is not only computed

during solver iterations but also at time steps during the simulation as well. One of the solver

www.manaraa.com

97

options in MBD software MSC ADAMS for example contains heuristics to help minimize the

number of times computation of the Jacobian is performed as this represents the most time

consuming part of a simulation [12]. Candidate algorithms for parallel computation of the

Jacobian should be gaged for performance relative to a similar serial version. One of the

simplest and most widely used metrics to gage parallel performance is observed speedup being

defined as serial execution divided by parallel execution time in terms of total elapsed or wall-

clock time [39]. This metric can be accomplished in MATLAB using the tic and toc functions.

MATLAB also offers a function for measuring CPU time but does not recommend using it on

systems capable of hyperthreading as the tic and toc functions are more reliable [15].

5.2 METHODS FOR COMPUTING THE JACOBIAN

The Jacobian is a matrix of first-order partial derivatives resulting from the linearization

or Taylor series expansion of a set of nonlinear equations about a known point or solution. This

matrix provides for a local linear model about the known point that can be used to predict nearby

points in the nonlinear model. Computation of this matrix is fundamental to most nonlinear

solver algorithms and is performed on an iterative basis until a converged solution to the

nonlinear model is found. In commercial FEA codes such as Nastran [11] and Abaqus [9], the

Jacobian or tangent stiffness matrix is part of a Newton-Raphson type solver. Due to

computational expense, effective solution strategies often minimize computation or hold the

Jacobian constant during iterations for a modified Newton-Raphson approach [1]. Commercial

MBD software MSC ADAMS [12] also uses a Newton-Raphson type solver for dynamics and

only updates the Jacobian if convergence is not achieved within a finite number of iterations.

www.manaraa.com

98

Development of efficient algorithms for computation of the Jacobian or derivatives in general is

paramount to nonlinear equation solvers as this tends to dominate the total computational time

for obtaining solutions.

Several methods for computing derivatives needed to construct the Jacobian are

available. Review of popular FEA [9,11] and MBD [12] software documentation indicates that

obtaining derivatives numerically by finite difference is still the standard approach being used.

A goal set by developers of MSC ADAMS is to eventually eliminate the need for numerical

differentiation [59] due to high computational cost. By finite difference, derivatives of an

individual function 𝑓 with respect to an independent variable 𝑥 are obtained by applying a small

change or perturbation to 𝑥. Variable ℎ can be used as a perturbation parameter and is added to 𝑥 to represent this change. The resulting expression for the derivative of 𝑓(𝑥) or 𝑓ˊ(𝑥) by a

forward finite difference is

𝑓ˊ(𝑥) ≈
𝑓(𝑥+ℎ)−𝑓(𝑥)ℎ (51)

which represents an approximation to the derivative by the calculus definition as it does not

include the limit expression for ℎ tending to zero. Observe that ℎ cannot become too small due

to limits of numerical precision on computers and possibility of dividing by a value close to zero.

Take for example a sample function 𝑓(𝑥) = 𝑥3 + 2𝑥 + 1 with an exact or analytical derivative

of 𝑓ˊ(𝑥) = 3𝑥2 + 2. Using Eq. (51) for estimation of the derivative about 𝑥 = 1 and varying ℎ

by a factor of 10 between 100and 10−20 results in Fig. 31 for the percent error of Eq. (51) with

respect to the analytical derivative. Results were obtained using MATLAB with double

precision representation of floating point numerical values. Error for this case was minimized

for ℎ = 10−8 and the procedure broke down or failed for ℎ ≤ 10−16 where 𝑓(𝑥) and 𝑓(𝑥 + ℎ)
became numerically equivalent after the 15th decimal place or a maximum of 16 significant

www.manaraa.com

99

digits. The numerator in Eq. (51) became zero for these instances resulting in 100% error.

Additional information on this method including error can be found in Ref. [60].

Figure 31. Percent error vs. parameter ℎ for given function 𝑓

An alternative to obtaining derivatives numerically by finite difference is symbolic

differentiation. In this case, the symbolic expression for 𝑓(𝑥) would be differentiated using rules

of calculus to obtain a new symbolic expression for 𝑓ˊ(𝑥). Numerical values of 𝑥 can then be

substituted into 𝑓ˊ(𝑥) for specific values of the derivative with an accuracy of 16 significant

digits when using double precision. The result for 𝑓ˊ(1) in this case would be 5 followed by a

decimal with fifteen zeros. The value obtained by finite difference, on the other hand, is

4.999999969612644, which exhibits error in the eighth decimal place for ℎ = 10−8. Although

symbolic differentiation can be used to obtain derivatives in an exact sense, computational

overhead for manipulating symbolic expressions using calculus based rules would limit this

procedure to small problems to avoid excess solve time. Further, some functions may lack

analytic description being modeled by tabular data requiring table lookup or interpolation

www.manaraa.com

100

procedures which cannot be differentiated symbolically. A comprehensive list of computer

programs capable of manipulating symbolic math expressions including their capabilities can be

found at https://en.wikipedia.org/wiki/List_of_computer_algebra_systems.

A third alternative to obtaining derivatives is automatic differentiation. The algorithm for

computing derivatives in this case uses existing computer programs or subroutines for

computation of a function 𝑓 and supplements them with a new routine for computation of 𝑓ˊ.
Derivatives are not subject to approximation error and are produced in an exact sense similar to

the symbolic method. Automatic differentiation seems to be gaining favor based on the amount

of research and computer codes being generated. Developing efficient, robust algorithms for

large-scale applications has been identified as a research challenge by a developer using

MATLAB [61] and favorable timing results in comparison to finite difference have been

obtained for a specific class of problem by developers using C++ [62]. MSC did a study for

integrating ADIFOR [63] into the FORTRAN version of ADAMS but it was not stated to having

been adopted [12] implying computational overhead exceeded that of finite difference for this

general purpose commercial software. A community portal with information on software,

conferences, and workshops dedicated to the subject matter can be found at

http://www.autodiff.org.

Calculation of derivatives for components of the Jacobian matrix were made using the

finite difference method in both serial and parallel code versions for this study. This decision

was based on ease of implementing various parallel versions for evaluating speedup and

likelihood it remains the most practical approach for computing derivatives in FEA and MBD

programs. Equations for a repeating link or chain system were chosen for computing the

Jacobian due to scalability and a specific reference in the LSOLVER section of the MSC

www.manaraa.com

101

ADAMS solver manual [12]. Better performance is claimed when using an available sparse

matrix solver with parallel capability for systems of 5000 degrees-of-freedom and larger with

exception to some models like simply-connected long chains. This trend set a goal for positive

margin on speedup for linkage systems under 5000 DOF for parallel computation of the Jacobian

using MATLAB code. Although numerical accuracy of derivatives in the Jacobian may be of

concern, highly accurate results for Newton-Raphson type solvers are not required. The

modified Newton-Raphson method, for example, may hold the Jacobian constant, without any

updates during iterations, and the BFGS method [16-19] avoids explicit computation of the

Jacobian by only computing an approximate update during solver iterations.

5.3 EQUATION THEORY AND BACKGROUND

Equations for the linkage system used in this study were derived using Lagrange’s

method [52]. This derivation results in a set of nonlinear DAEs used for computation of the

Jacobian matrix. Equations can be represented in compact form where 𝒖 is understood to

contain a mix of space and time dependent variables as represented by Eq. (1) and linearized

about a known state 𝒖𝑖 using a first-order Taylor series expansion for solution by the Newton-

Raphson method. 𝒇(𝒖) ≈ 𝒇(𝒖𝑖) + (𝜕𝒇𝜕𝒖)𝑖 (𝒖 − 𝒖𝑖) = 𝟎 (52)

Bolded terms in Eq. (52) are used to represent vectors where 𝒖 is the vector of unknown

variables and 𝒇(𝒖) is the system of DAEs. Vector 𝒖 is often referred to as the state vector and

contains variables for position, velocity, and constraint forces for each link in the system. The

www.manaraa.com

102

derivative term in Eq. (52) is the Jacobian with the following expanded or matrix format for 𝑁

unknown variables or DOF.

(𝜕𝒇𝜕𝒖)𝑖 = [
 𝜕𝑓1𝜕𝑢1 ⋯ 𝜕𝑓1𝜕𝑢𝑁⋮ ⋱ ⋮𝜕𝑓𝑁𝜕𝑢1 ⋯ 𝜕𝑓𝑁𝜕𝑢𝑁]

𝑖
 (53)

Eq. (53) shows that a system containing 𝑁-DOF will have 𝑁𝑥𝑁 or 𝑁2 derivatives in the

Jacobian. Calculation of every individual derivative may not be required, however, as individual

equations in Eq. (52) can be organized in a manner such that the Jacobian will have a known

pattern. This organization is true for mechanical systems in general and sparsity or zero-entries

in the Jacobian resulting from linearization of governing DAEs can be taken advantage of as

well. Details on the derivation of equations using this approach for a single link or pendulum

including pattern forming of the Jacobian can be found in Ref. [53]. The single link has eight

unknown variables for this case as motion is constrained to a plane. A similar planar constraint

was used for the multi-link system in this study where total DOF is obtained by multiplying the

number of links by eight. Variables or DOF for each link consist of two for position, one for

orientation, their corresponding derivatives, and two for the constraint forces.

Governing equations for the multi-link systems were produced using a MATLAB

function or subroutine based on a repeating pattern for systems of two links and greater. Serial

and parallel subroutines with options for sparse versus dense formulations were then developed

for timing of numerical computation of the Jacobian for a varying number of links. Validation of

computer code was performed for a two link system under the influence of gravity using a

previously developed nonlinear software suite capable of simulating dynamic systems [51].

Results for the horizontal constraint force versus time for the grounded connection with links

www.manaraa.com

103

initially configured as an upside down “V” are shown in Fig. 32. Blue dots on the figure were

found using MATLAB and the red line was found using MSC ADAMS.

Figure 32. Constraint force vs. time for double link system

The 16x16 Jacobian was small enough in this case where hand or symbolic computation

of derivatives could be performed with reasonable effort. A function with expressions for

derivative terms was then developed for computation of the Jacobian in an exact sense for

comparison to a serial numerical version in terms of solution time for the two second simulation

shown in Fig. 32. The total solution or wall time for the MATLAB simulation was 0.45 seconds

using the explicit definition of the Jacobian versus a 5 second solution time for computation of

derivatives numerically by finite difference. The time step used for the simulation was 0.001

seconds and convergence was achieved within 3 to 4 iterations per time step using a Newton-

Raphson type solver where the Jacobian was updated at every iteration. The over tenfold

increase in solution time between the two simulations demonstrates the high cost associated with

numerical computation of the Jacobian. Switching to a modified Newton-Raphson method

www.manaraa.com

104

where the Jacobian was calculated numerically only once per time step and held constant

increased iterations for convergence up to 9 in some instances but reduced the solution time to

1.67 seconds. This behavior further reinforces that computation of the Jacobian should be

minimized to avoid excessive solution times in general. Note that the explicit definition of the

Jacobian provided for an idealized case for timing results. However, such an approach would

not be practical for large systems and would require use of a numerical procedure.

5.4 SERIAL CODE IMPLEMENTATION

A simplified version of MATLAB code used to numerically compute the Jacobian matrix

in a serial fashion is shown in Fig. 33. Function ser_jacobi is defined to output Jacobian matrix 𝑱 using state 𝒖𝑖 as input. Code is “vectorized” in the sense that the matrix is computed a column

at a time with a single for-loop verses element-wise using a double for-loop. Column entities in

Eq. (53) show equations 𝒇 being differentiated with respect to a given element of vector 𝒖 such

that perturbations applied to specific elements of 𝒖 can be used to compute entire columns of 𝑱.
Vectorization is a key concept in MATLAB programming as it simplifies code, allows users to

take advantage of underlying subroutines inherent to the programming language, and will likely

perform computations in the most efficient manner. The column-wise implementation of Eq.

(51) is shown on row twelve of Fig. 33. The (: , 𝑗) operator is used to designate all row entities

of the 𝑗𝑡ℎ column in 𝑱 being a difference in perturbed vector 𝒇(𝒖𝑝) and original vector 𝒇(𝒖𝑖)
with all entities being divided by ℎ. Additional information on code vectorization can be found

in the Vectorization section of the MATLAB user documentation [15].

www.manaraa.com

105

Figure 33. Serial Jacobian computation using MATLAB

Code in Fig. 33 is specific to computation of the full Jacobian matrix or all matrix entities

and storing them in a dense format that includes any zero entities. Such computation can be

expensive for large systems and a significant reduction in computational cost can be achieved by

taking advantage of known patterns and sparsity. Through proper arrangement of state variables

in 𝒖, the Jacobian for the multi-link systems has the following block matrix format consistent

with the general format given in Ref. [53]. Zeros sub-matrices are due to Lagrange’s method

being used to derive governing equations, which results in large sets of equations in redundant

coordinates and considerable sparsity for the Jacobian.

𝑱 =

[

 1𝑑𝑡𝑴 𝟎 𝟎 𝟎 𝚽𝑝𝑇𝟎 1𝑑𝑡 𝑰𝑪𝑴 𝟎 [𝚽𝜀𝑇𝚲]𝜀 𝚽𝜀𝑇−𝑰 𝟎 1𝑑𝑡 𝑰 𝟎 𝟎𝟎 −𝑰 𝟎 1𝑑𝑡 𝑰 𝟎𝟎 𝟎 𝚽𝑝 𝚽𝜀 𝟎]

 (54)

Components of 𝑱 include diagonal sub-matrices 𝑴, 𝑰𝑪𝑴, and 𝑰 being mass, inertia, and

identity matrices respectively. Term 𝑑𝑡 applied to these matrices is the time step or increment

used between states for dynamic simulation. Constraint equations are stored in vector 𝚽 where

www.manaraa.com

106
 𝚽 = 𝟎 and subscripts 𝑝 and 𝜀 are used to denote partial derivatives with respect to position and

orientation variables respectively. Finally, the constraint forces or Lagrange multipliers are

stored in column vector 𝚲. Sub-matrices for mass, inertia and identity do not change for constant 𝑑𝑡 or within a given time step and are invariant. Standalone identity matrices are invariant by

definition. This invariance leaves only sub-matrices containing 𝚽 for numerical computation,

which dramatically reduces the amount of computational overhead and size of the for-loop in

Fig. 33. A more efficient strategy for computation of the Jacobian would now involve pre-

allocation and construction of a sparse matrix with invariant terms followed by computation of

the 𝚽 sub-matrix blocks in the last row, and the row two, column four block locations of Eq.

(54). Previously calculated 𝚽 blocks in the last row can then be transposed and inserted into the

last column of Eq. (54).

The need for sparse versus dense format of the Jacobian is driven by both computer

memory for storage and computational cost of factorization. The Jacobian must be factorized

each time a new version is computed as it is part of a linear system being solved during iterations

of Newton-Raphson based solvers. Eliminating the storage of zeros and the processing of zero

entities in sparse computational algorithms can have dramatic effects on efficiency and become

more apparent as systems increase in size. Table 13 for example shows the wall time needed to

solve a sample linear system Δ𝒖 = 𝑱−1𝑹 where 𝑱 is stored in both sparse and dense formats for

timing comparison. Variable Δ𝒖 denotes an incremental change in state vector 𝒖, 𝑹 is a residual

vector set to all ones, and Jacobian 𝑱 has been factorized into lower and upper triangular

elements versus taking the inverse for solution. The speed factor in Table 13 is a multiplier of

how many times faster the sparse solver is compared to the dense, and the non-zero (NZ) ratio is

the number of non-zero terms divided by the total or 𝑁2 number of terms in 𝑱. Numerical values

www.manaraa.com

107

in the table indicate that sparsity is significant and large performance gains in solution time can

be expected by using the sparse matrix format and solver. A detailed overview of sparse

matrices and sparse matrix operations in MATLAB can be found in Ref. [64].

Table 13

Solution times using sparse and dense Jacobian (sec)

Links DOF sparse dense factor NZ ratio

200 1600 0.003 0.08 27.64 2.0E-03

400 3200 0.006 0.56 90.21 1.0E-03

600 4800 0.009 1.40 148.57 6.8E-04

800 6400 0.012 3.15 252.23 5.1E-04

1000 8000 0.016 5.87 372.81 4.1E-04

1200 9600 0.019 9.84 516.66 3.4E-04

1400 11200 0.023 15.06 664.97 2.9E-04

1600 12800 0.027 23.10 853.97 2.5E-04

1800 14400 0.031 32.24 1052.13 2.3E-04

2000 16000 0.034 43.29 1262.09 2.0E-04

5.5 PARALLEL CODE IMPLEMENTATION

Parallel processing of computational algorithms in MATLAB can be implemented using

either parallel for-loops, parfor, or by spmd. Parallel for-loops work only for the simplest of

algorithms and each loop must be totally independent from all others. The perturbed vector 𝒖𝑝

inside the for-loop shown in Fig. 33 is updated element-wise over the course of loop iterations

such that a parallel for-loop cannot be used for computing the Jacobian in this manner. The

single program multiple data or spmd option, however, is more versatile and allows for specific

tasks to be assigned to specific processors. Once a parallel job is started in MATLAB, one

processor is assigned the role of client while the remaining processors are assigned the role of

workers. Computation of the Jacobian can be accomplished by dividing the for-loop in Fig. 33

over a specified number of processors using spmd. This specification requires creation of an

www.manaraa.com

108

indexing array used to identify the start and finish column identification numbers based on

desired matrix partitions. However, changes to the serial code are minimal making this method

easy to implement.

The Jacobian can be stored using either distributed arrays, codistributed arrays or

composite objects when using the spmd option. Arrays are considered as distributed or

codistributed as viewed from the perspective of the client or worker processors. Distributed

arrays are created on the client where codistributed arrays are created on the workers themselves.

Positive timing results for writing and updating elements of these type arrays could not be

obtained. This lack of improvement may be due to the client-worker relation where writing new

elements to workers causes a similar update to be performed on the client. However, explicit

reference to how writing of elements to these arrays is performed could not be found in

documentation and users do not have access to the underlying C-code used to write MATLAB

software. Composite objects, on the other hand, produced positive results for computing the

Jacobian in parallel. These objects exist on workers and have the same variable name on all

workers but store different data. The downside of composite objects is that they must be

converted back into a single matrix for use in computations in their entirety. Parallel

computation of the Jacobian using composites for example will be stored in independent groups

of columns on workers. If the Jacobian is then needed for use in a linear system 𝑱Δ𝒖 = 𝑹, it will

need to be converted into matrix form.

A parallel version of the for-loop used to calculate the Jacobian in Fig. 33 is shown in

Fig. 34. Code is again specific to computation of the full Jacobian matrix in dense form. This

instruction provides for the most compact, readable version of code to demonstrate spmd

parallelization. Computation of the index array, index, for parsing of the Jacobian is not shown

www.manaraa.com

109

on the figure. Variable 𝑤 is used to designate specific worker or processor identifications. The

labindex function is used to distribute tasks being calculation of specific columns of the Jacobian

to specific workers. Column identification numbers all start with one for composite objects on

workers and an additional variable 𝑘 is used to distinguish between column identification

numbers for the entire Jacobian and sections being stored in composite objects. Computation of

the 𝚽 blocks only would require additional indexing for start and finish row identification

numbers versus processing of all rows as shown in Fig. 34. Final assembly of the Jacobian using

dense or sparse format would then be carried out after the spmd block of code is complete.

Figure 34. Parallel Jacobian computation using MATLAB

5.6 CODE TIMING RESULTS

The timing of computer code was accomplished using the 2015b version of MATLAB

software and is reported using wall time. The tic and toc functions in MATLAB behave similar

to a stopwatch where toc provides for the total elapsed or wall time since the last initiation of tic.

www.manaraa.com

110

The cputime function offers an alternative but was not used due to potential for misleading

results. Additional explanation of the two timing methods can be found in the Measure

Performance of Your Program section of the MATLAB user documentation [15]. Here, the tic

and toc functions are stated to be more reliable than cputime and significant difference in

reported times can occur due to hyperthreading where instructions are processed in parallel on a

single processor. Wall time may be considered a more conservative approach for characterizing

performance of computer code as it includes all communications overhead associated with

parallel operations.

Wall timing results for processing of the Jacobian are shown in Tables 14 through 16.

Each table includes a timing comparison of serial to parallel code for a given number of links

using a varying number of processors (NP). The size of the Jacobian matrix or number of rows

and columns is equal to the DOF number. Wall time is reported in seconds where an associated

speedup factor defined as the serial divided by parallel time is used to indicate performance.

Results were obtained using a Windows 7 laptop computer with an Intel i7-3720QM processor

and available 16 GB RAM (gigabytes of random access memory). A maximum of 8 threads or

processors were available to MATLAB as workers and timing is initially reported using

maximum resources. This decision was based on identifying the smallest DOF system with

positive performance or a speedup factor greater than one with maximum parallel

communications overhead. The number of links was then varied in an increasing manner until

the speedup factor no longer demonstrated significant gains in performance. At this point, use of

computational resources is considered maximized with no additional bandwidth available for

further performance gains. Lines across the center of tables are used to denote this breakpoint.

www.manaraa.com

111

The number of processors was then decreased while holding the DOF constant showing an

expected decrease in the speedup factor due to the reduction of computational resources.

Table 14 considers computation of all entities or the full Jacobian matrix using composite

objects only and saves them using dense format; this includes zero terms. Positive performance

with a speedup factor of 1.2 occurs for a 200 link, 1600 DOF system. As the number of DOF

continues to increase, performance is seen to level off at 8000 DOF with a maximum speedup

factor of 3.8. Note that linear speedup could not be obtained as the addition of processors does

not come with additional memory. Decreasing the number of processors while holding DOF

constant at 8000, then provides for a minimum speedup factor of 1.7 when using only two

processors. Computations used for the Jacobian in Table 15 were similar to those in Table 14

with the exception of inclusion of time to convert the composite object to a double precision

matrix. The conversion is simple but cost is significant as seen by the overall reduction in

speedup factor when compared with corresponding values in Table 14. Positive margin for

speedup now requires a 3200 DOF versus 1600 DOF system and performance levels out at 6400

DOF versus 8000 DOF when using 8 processors.

Table 16 provides results for a pre-allocated sparse Jacobian with invariant sub-matrices

and computation of the constraints or blocks containing 𝚽 only. Composite objects are used for

the constraint blocks and time to convert to sparse double precision format is included as well.

Gains for parallel performance are seen for systems up to 6400 DOF. Wall time is the lowest as

compared to other methods and use of sparse format will provide a significant speed advantage

during a linear solution phase as shown in Table 13. This procedure for computing the Jacobian

would be considered the most practical and recommended as it takes advantage of known

www.manaraa.com

112

patterns, sparsity, and conversion to double precision matrix format for use in solving a linear

system.

Table 14

Calculation of full Jacobian, dense composite format (sec)

Links DOF NP serial parallel factor

200 1600 8 0.6 0.5 1.2

400 3200 8 3.3 1.6 2.1

600 4800 8 9.7 3.1 3.1

800 6400 8 18.6 5.3 3.5

1000 8000 8 30.5 8.1 3.8

1200 9600 8 45.3 12.0 3.8

1000 8000 8 30.5 8.1 3.8

1000 8000 6 30.0 9.1 3.3

1000 8000 4 30.2 11.5 2.6

1000 8000 2 30.2 18.0 1.7

Table 15

Calculation of full Jacobian, dense matrix format (sec)

Links DOF NP serial parallel factor

200 1600 8 0.6 0.8 0.7

400 3200 8 3.2 2.5 1.3

600 4800 8 9.9 5.3 1.9

800 6400 8 19.0 9.2 2.1

1000 8000 8 32.3 15.5 2.1

1000 8000 8 32.3 15.5 2.1

1000 8000 6 32.3 16.3 2.0

1000 8000 4 32.2 17.7 1.8

1000 8000 2 32.4 24.8 1.3

www.manaraa.com

113

Table 16

Calculation of block Jacobian, sparse matrix format (sec)

Links DOF NP serial parallel factor

200 1600 8 0.2 0.4 0.6

400 3200 8 1.3 0.8 1.6

600 4800 8 3.9 1.6 2.4

800 6400 8 7.8 2.7 2.9

1000 8000 8 11.8 4.0 2.9

1000 8000 8 11.8 4.0 2.9

1000 8000 6 11.3 4.9 2.3

1000 8000 4 11.3 5.9 1.9

1000 8000 2 11.4 8.4 1.4

5.7 CONCLUSIONS

Successful development of explicitly defined parallel code for computing the Jacobian

matrix was completed using MATLAB. The spmd method using composite objects was found to

be the only procedure that produced positive results while use of the sparse as compared to dense

format provided for dramatic speed improvements for solutions to linear systems. Speedup of

parallel code was demonstrated on a shared memory PC and compared to serial code with

underlying parallel operations using wall time. This comparison provided for a most

conservative estimate for parallel code speedup as underlying parallel operations are integral to

MATLAB and wall time includes parallel communications overhead. Linear type parallel

speedup could not be achieved using the chosen performance metrics and computer architecture,

which are quite common and may represent a typical MATLAB environment. Performance

gains were demonstrated, however, and an approximate three times speedup for the

recommended sparse format, double precision Jacobian matrix was achieved. The goal of

demonstrating speedup for systems under 5000 DOF was also achieved being most applicable to

smaller scale FEA or MBD problems that can run efficiently on PCs. MATLAB users running

www.manaraa.com

114

nonlinear FEA and MBD codes on PCs should expect significant performance gains when using

sparse matrix operations and marginal parallel performance gains for systems on the order of

3200 DOF and greater.

www.manaraa.com

115

CHAPTER 6

SPACECRAFT RELATIVE ORBIT DETERMINATION CASE STUDY

 A numerical path following procedure using an arc-length solver is applied to nonlinear

algebraic equations sets used to determine initial conditions for spacecraft relative motion in

planar and space or three-dimensional orbits. Multiple roots or solutions to such equations are

known to exist based on previous work where MATLAB’s fsolve routine was used to identify

solutions. Previous work is revisited and two additional roots for the planar orbit system are

found. Parameterized solution curves produced by the arc-length solver provide for a graphical

representation of the overall solution and increase likelihood that all roots are found.

Identification of all roots is critical as only one represents initial conditions for an orbit of non-

zero velocity and minimum energy.

6.1 INTRODUCTION

 Orbit determination procedures are used to predict relative motion of one moving body

with respect to another through use of a series of measurements and mathematical models [65].

Recent work involves use of Volterra multi-dimensional convolution theory for prediction of this

motion [66]. In this reference, one body is designated as the chief while the other is designated

as a deputy. A series of measurements are performed that locate the deputy relative to the chief

at discrete times and are used to construct a set of nonlinear measurement equations. These

equations are coupled quadratic polynomials of the general form

www.manaraa.com

116
 𝒇𝑖(𝑥0, 𝑦0, 𝑧0, �̇�0, �̇�0, �̇�0) = 𝟎 (55) 𝒈𝑖(𝑥0, 𝑦0, 𝑧0, �̇�0, �̇�0, �̇�0) = 𝟎

where integer 𝑖 provides a unique identifier for individual equations in the set. Unknown

variables represent initial conditions for position (𝑥0, 𝑦0, 𝑧0) and velocity (�̇�0, �̇�0, �̇�0)
respectively. Specific details regarding structure of equations can be found in Ref. [66] where

constants used to define the equations include the Earth standard gravitational parameter 𝜇 = 3.986𝑥105 𝑘𝑚3/𝑠2 and chief mean radius 𝑅𝐶 = 7100 𝑘𝑚.

Solving of the measurement equations shown in Eq. (55) provides for the initial

conditions needed to construct a set of trajectory equations used to determine relative motion

between the chief and deputy. Trajectory equations are also defined in Ref. [66]. As these

equations depend entirely on the set of initial conditions used, choosing the right set becomes

critical. When multiple roots or solutions exist, this choice is based on the set of initial

conditions that produces an orbit of non-zero and minimum relative specific energy (𝑒).
Equations used to calculate energy are based on the relative motion dynamics and reference

frames defined in Ref. [67]. 𝑒 = (𝑉𝐷2 − 𝑉𝐶2)/2 − 𝜇(1/𝑅𝐷 − 1/𝑅𝐶) (56)

𝑅𝐷 = √(𝑅𝐶 + 𝑥0)2 + 𝑦02 + 𝑧02

𝑉𝐷 = √(�̇�0 − 𝑛𝑦0)2 + (𝑉𝐶 + �̇�0 + 𝑛𝑥0)2 + �̇�02

𝑉𝐶 = √𝜇/𝑅𝐶

𝑛 = √𝜇/𝑅𝐶3

www.manaraa.com

117

Subscripts 𝐶 and 𝐷 designate chief and deputy respectively where 𝑅 is radius, 𝑉 is velocity and 𝑛 is the chief mean motion. This energy calculation was not used in Ref. [66] as found roots

produced relative orbits that were of obvious higher energy as compared to the expected

solution. This excess energy trait was not the case for one of the additional found roots

identified when using solution curves making the need to compute and assess energy in a

systematic process necessary.

 In addition to using arc-length solvers for identifying roots, stopping or termination

criteria was also defined in the event solution curves continued on a path towards infinity. These

curves are best plotted by selecting any or all of the independent variables and plotting them with

respect to the common scalar solution 𝜆 on the vertical axis. Solution curves that do not close or

remain open and increasing towards infinity need to be terminated at some point and designated

as not turning back towards the 𝜆 = 0 axis for an additional root. This termination can be based

on asymptotic or linear type behavior in the solution that may develop for continuously

increasing or decreasing 𝜆. Trends in solution curves towards vertical, horizontal, or oblique

type asymptotes can be identified in a qualitative sense as viewed on plots within a given

sectional view of hyperspace. Although path following of the solution could be stopped based

on observation, more definitive criteria based on change in slope was used to terminate the

procedure. Due to the multi-degree-of-freedom nature and coupling between equations for given

systems, the behavior of all independent variables should be considered simultaneously when

evaluating for asymptotes.

 One of the simplest methods for identifying asymptotic behavior involves monitoring of

the Jacobian or tangent stiffness matrix 𝑲 for change at selected 𝜆 locations or 𝛥𝜆 increments

along a given solution curve. Row vectors 𝒌𝑖𝒋 of the Jacobian matrix represent change in slope

www.manaraa.com

118

with respect to independent variables for individual equations or representative hypersurfaces

contained in the nonlinear system. Subscript 𝑖 designates the row number where bolded 𝒋
designates all column entities with a given row. As equations are coupled and share a common

solution, it may be possible to evaluate change using only a single row; however, all rows were

chosen for evaluation and provided consistent results. Linear or asymptotic behavior for large

and continually increasing or decreasing 𝜆 is assumed as change between individual rows of the

Jacobian become continually less. A metric based on difference ratio denoted by 𝑑𝑖𝑓𝑓 can be

established where both a sampling increment 𝛥𝜆 and a minimum difference used to designate

asymptotic behavior will need to be specified. 𝑑𝑖𝑓𝑓 = ‖[𝒌𝑖𝒋]𝜆+𝛥𝜆 − [𝒌𝑖𝒋]𝜆‖/‖[𝒌𝑖𝒋]𝜆‖ (57)

Subscripts located after row vector brackets in Eq. (57) are used to indicate specific points on the

solution curve for values of 𝜆. If the relation between two points 𝜆 and 𝜆 + 𝛥𝜆 on a solution

curve share the same slope or became perfectly linear, 𝑑𝑖𝑓𝑓 would be equal to zero. A zero

value for 𝑑𝑖𝑓𝑓 may not be practical to achieve or may require excessive solver iterations during

path following and need only be considered small for determination of asymptotic behavior.

6.2 PLANAR ORBIT

 Two-dimensional relative motion between two bodies occurs when the deputy's motion

lies in the orbital plane of the chief defined by the xy axes of the local-vertical local-horizontal

(LVLH) reference frame attached to the chief. In the planar case, Eq. (55) represents four

quadratic homogeneous polynomial equations in terms of four unknowns (𝑥0, 𝑦0) and (�̇�0, �̇�0).

Specific orbital conditions and the four measurement times are documented in Ref. [66].

www.manaraa.com

119

Solution curves for the planar orbit are shown in Figs. 35 through 38 for solution curve 1 and

Figs. 39 through 42 for solution curve 2. Roots or candidate solutions for deputy initial orbit

conditions are designated using capital letters A through F on curves where they cross the 𝜆 = 0

axis. Although plotting of a single variable only is required for a pictorial of the solution in a

given sectional view of hyperspace, all four variables were chosen so that differences between

plots could be observed. While some curves self-intersect, others do not and provide for more

obvious separation between roots on plots. The order in which roots occur when following a

given curve is consistent, but order does not matter for this particular application as the objective

lies in finding the root, which minimizes relative specific energy. An all zero or trivial solution

where the deputy coincides with the chief exists but is rejected based on the resulting zero energy

condition. Specific values for roots obtained using solution curve 1 and their corresponding

relative specific energy values are in Tables 17 and 18. Similar values for solution curve 2 are in

Tables 19 and 20. Using these tables, state E is chosen based on minimum energy while trivial

state D and other higher energy states are rejected.

www.manaraa.com

120

Figure 35. Solution curve 1 for deputy 𝑥0

Figure 36. Solution curve 1 for deputy 𝑦0

A C B

A B
C

www.manaraa.com

121

Figure 37. Solution curve 1 for deputy �̇�0

Figure 38. Solution curve 1 for deputy �̇�0

C B

A

A C B

www.manaraa.com

122

Table 17

Candidate states, curve 1

Variable State A State B State C 𝑥0(𝑘𝑚) -1996 1561 1733 𝑦0(𝑘𝑚) -2916 7902 4890 �̇�0(𝑘𝑚/𝑠) 1.195 1.380 1.167 �̇�0(𝑘𝑚/𝑠) 3.758 -3.431 -3.741

Table 18

Relative specific energy (𝑘𝑚2/𝑠2), curve 1

State A State B State C

11.199 34.585 12.134

Figure 39. Solution curve 2 for deputy 𝑥0

D

E F

www.manaraa.com

123

Figure 40. Solution curve 2 for deputy 𝑦0

Figure 41. Solution curve 2 for deputy �̇�0

E F

D

E

F D

www.manaraa.com

124

Figure 42. Solution curve 2 for deputy �̇�0

Table 19

Candidate states, curve 2*

Variable State D State E State F 𝑥0(𝑘𝑚) 0 0.200 18.25 𝑦0(𝑘𝑚) 0 0.000 24.81 �̇�0(𝑘𝑚/𝑠) 0 0.002 -0.003 �̇�0(𝑘𝑚/𝑠) 0 0.020 0.007

* Determined orbit highlighted red

Table 20

Relative specific energy (𝑘𝑚2/𝑠2), curve 2*

State D State E State F

0 0.153 0.341

* Determined orbit highlighted red

Extended plots for solution curve 1 are shown in Figs. 43 through 46 and Figs. 47

through 50 for solution curve 2. Values for 𝜆 exceed ±104 such that development of linear or

F E

D

www.manaraa.com

125

asymptotic type behavior can be observed. At these large values for 𝜆, the common scalar

solution to all equations is indicative of continually increasing towards infinity and not turning

back towards the 𝜆 = 0 axis for possibility of an additional root. In these sectional views of

hyperspace, asymptotes primarily appear as oblique with the exception of the 𝑥0 and �̇�0 solution

curves, which appear to approach vertical asymptotes in the increasing – 𝜆 direction. The likely

presence of asymptotes indicates there are an infinite number of non-zero 𝜆 solutions to this

system with only a finite number of 𝜆 = 0 roots for the given solution curves. For this particular

system, two solution curves containing three roots each were found.

Figure 43. Extended solution curve 1 for deputy 𝑥0

www.manaraa.com

126

Figure 44. Extended solution curve 1 for deputy 𝑦0

Figure 45. Extended solution curve 1 for deputy �̇�0

www.manaraa.com

127

Figure 46. Extended solution curve 1 for deputy �̇�0

Figure 47. Extended solution curve 2 for deputy 𝑥0

www.manaraa.com

128

Figure 48. Extended solution curve 2 for deputy 𝑦0

Figure 49. Extended solution curve 2 for deputy �̇�0

www.manaraa.com

129

Figure 50. Extended solution curve 2 for deputy �̇�0

 Plots of difference ratios using Eq. (57) for rows in the Jacobian matrix are shown in

Figs. 51 through 54. Computations begin at the 𝜆 = ±500 axes, continue toward the 𝜆 = ±2 ×104 axes, and cover what appears to be asymptotic regions of the extended solution curve plots.

Curves were sampled at locations that provided for a 𝛥𝜆 increment of approximately 100 for

construction of plots.

www.manaraa.com

130

Figure 51. Solution curve 1 difference ratio for positive 𝜆

Figure 52. Solution curve 1 difference ratio for negative 𝜆

λ
λ

www.manaraa.com

131

Figure 53. Solution curve 2 difference ratio for positive 𝜆

Figure 54. Solution curve 2 difference ratio for negative 𝜆

λ
λ

www.manaraa.com

132

 Tendency for the difference ratio to approach zero for increasing 𝜆 is apparent on Figs.

51 through 54. The procedure was terminated when this ratio or 𝑑𝑖𝑓𝑓 became less than 0.005 or

half of a percent when using the specified 𝛥𝜆 increment. Plots could be made to appear more

dramatic or have a sharper turning radius near the vertical 𝑑𝑖𝑓𝑓 = 0 axis if the process were

started closer to the 𝜆 = 0 axis where changes in slope are more significant. Although this

region of the plot could be included, evaluation of changes in the Jacobian for asymptotes is

intended for the more linear portions of the solution curves with large and continually increasing

or decreasing 𝜆. Decreasing the value of 𝛥𝜆 will also have an effect on the magnitude of 𝑑𝑖𝑓𝑓.

Using curve 2 for example, 𝑑𝑖𝑓𝑓 can be decreased by nearly an order of magnitude or 10X

through a 5X reduction in the 𝛥𝜆 sampling increment, which essentially shifts the curve left

towards the 𝑑𝑖𝑓𝑓 = 0 axis. Best practice in evaluation of asymptotes should therefore involve

selection of a 𝛥𝜆 increment that represents a significant change in the solution and avoids

approaching the limiting case of a zero increment with coincident points or zero difference. In

Figs. 51 through 54, the beginning of 𝑑𝑖𝑓𝑓 to decrease in a more gradual manner towards zero

can be seen in the |𝜆| < 1 x 104 range. The selected 𝛥𝜆 increment used to construct figures

represents a 1% change between solution points in this region, provides for sufficient separation

between points, and identifies relatively small changes in the Jacobian or the development of

linear type behavior. Continued path following of the solution for increasing or decreasing 𝜆

could be performed to further strengthen the argument of linear behavior, but this would come at

the expense of increased computations for additional points on the solution curve.

www.manaraa.com

133

6.3 SPACE ORBIT

 Three-dimensional relative motion between the two bodies occurs when the deputy's

motion lies off of the chief orbital plane due to additional position and velocity components 𝑧

and �̇� in the LVLH reference frame. Note the deputy trajectory frequently crosses or intersects

this plane momentarily as it orbits "above" and "below" the chief. In this space case, Eq. (55)

represents six quadratic homogeneous polynomial measurement equations for the six unknowns

(𝑥0, 𝑦0, 𝑧0) and (�̇�0, �̇�0, �̇�0). Specific orbital conditions and measurement times are documented

in Ref. [68]. A single solution curve for the general orbit case is shown in Figs. 55 through 60.

A total of seven roots or candidate solutions for deputy initial orbit conditions are designated

using capital letters A through G on the figures. Specific values for roots and their

corresponding relative specific energy values are shown in Tables 21 and 22. Similar to the

planar orbit, an all zero or trivial solution exists and is rejected based on having zero energy.

Using these tables, state A is chosen based on minimum energy while trivial state C and other

higher energy states are rejected. While state variables 𝑥0, 𝑦0 and their derivatives for the

nontrivial, lowest energy state appear somewhat similar for the planar and space orbits, energy

for the general three-dimensional orbit is approximately an order of magnitude or ten times less

than the two-dimensional case. Inclusion of the 𝑧0 variable and its derivative is also shown to

produce states of much higher energy as compared to the planar orbit.

www.manaraa.com

134

Figure 55. Solution curve for deputy 𝑥0

Figure 56. Solution curve for deputy 𝑦0

C,A,D E G F B

A,C,D E B F G

www.manaraa.com

135

Figure 57. Solution curve for deputy 𝑧0

Figure 58. Solution curve for deputy �̇�0

A,C,D,E B

F

G

B G,E

D,C,A

F

www.manaraa.com

136

Figure 59. Solution curve for deputy �̇�0

Figure 60. Solution curve for deputy �̇�0

B

F G E D,C,A

B

F

G
E,D,C,A

www.manaraa.com

137

Table 21

Candidate states*

Variable State A State B State C State D State E State F State G 𝑥0(𝑘𝑚) 0.200 2523 0 44.79 812.4 1602 1189 𝑦0(𝑘𝑚) 0.000 2890 0 60.04 1166 3772 7235 𝑧0(𝑘𝑚) 0.000 299.2 0 2.853 24.23 386.7 -2055 �̇�0(𝑘𝑚/𝑠) 0.002 -0.358 0 -0.023 -0.230 0.622 -0.252 �̇�0(𝑘𝑚/𝑠) 0.020 -4.393 0 -0.121 -1.728 -3.404 -2.587 �̇�0(𝑘𝑚/𝑠) 0.020 0.260 0 -0.037 -0.080 0.727 5.249

* Determined orbit highlighted red

Table 22

Relative specific energy (𝑘𝑚2/𝑠2)*

State A State B State C State D State E State F State G

0.018 43898 0 4.427 275.7 73280 2127953

* Determined orbit highlighted red

Extended plots for the solution curve are shown in Figs. 61 through 66. Values for 𝜆

exceed ±104 such that development of linear or asymptotic type behavior can be observed on

the figures. As is the case for the planar orbit solution, asymptotes primarily appear as oblique

with the exception of the 𝑥0 and �̇�0 solution curves which appear to approach vertical asymptotes

in the – 𝜆 direction. These asymptotes again imply existence of an infinite number of 𝜆 ≠ 0

solutions to the relative motion equation set in the three-dimensional setting, but only seven 𝜆 =0 solutions were discovered.

www.manaraa.com

138

Figure 61. Extended solution curve for deputy 𝑥0

Figure 62. Extended solution curve for deputy 𝑦0

www.manaraa.com

139

Figure 63. Extended solution curve for deputy 𝑧0

Figure 64. Extended solution curve for deputy �̇�0

www.manaraa.com

140

Figure 65. Extended solution curve for deputy �̇�0

Figure 66. Extended solution curve for deputy �̇�0

www.manaraa.com

141

 Plots of difference ratios using Eq. (57) for rows in the Jacobian matrix are shown in

Figs. 67 and 68. Plots cover what appear to be asymptotic regions of the extended solution

curves and were constructed using a 𝛥𝜆 increment of approximately 100. Similar to the planar

orbit case, the space orbit case shows difference ratios for all rows of the Jacobian are seen to

approach zero for continuously increasing or decreasing 𝜆.

Figure 67. Difference ratio for positive 𝜆

λ

www.manaraa.com

142

Figure 68. Difference ratio for negative 𝜆

6.4 CONCLUSIONS

 A numerical path following procedure based on the arc-length method was successfully

applied to nonlinear equation sets for purpose of finding roots representing initial conditions for

orbit determination. The procedure was demonstrated to be more robust as compared to

searching for individual roots as two additional roots were found for the planar orbit case. The

primary advantage of using arc-length solvers over other nonlinear solvers that treat the common

scalar solution as known is the increased likelihood that some point or solution on a given

solution curve will be found as compared to finding an individual root. Once an arbitrary

solution point is found, path following of the solution curve is performed to identify the

associated roots. Problems were thus transformed from searching for individual roots to

searching for individual solution curves containing a finite number of roots. The path following

λ

www.manaraa.com

143

procedure was terminated based on a proposed difference metric using the Jacobian matrix to

identify the development of asymptotic or linear type behavior.

www.manaraa.com

144

CHAPTER 7

CONCLUSIONS AND FURTHER RESEARCH

 Specific conclusions are contained in Chapters 3 through 6 to maintain consistency with

previous or pending published work. In Chapter 3, arc-length solvers were found to be more

robust as compared to other parametrized nonlinear solvers in terms of minimizing restarts in the

event of solver failure and provided for a broader range by which to search for solutions due to

the parameter being treated as unknown. In Chapter 4, arc-length solvers were used to construct

static solution curves as part of a path following technique to identify the many possible

equilibrium states for several mechanical systems. A procedure was proposed for identification

of true equilibrium providing for a more comprehensive methodology as compared to point

solution methods currently found in commercial software. In Chapter 5, a method for parallel

processing of the Jacobian matrix using MATLAB was established and speedup was achieved in

comparison to a serial version with underlying parallel operations on a shared memory PC. In

Chapter 6, a case study was performed where path following based on the arc-length method was

used to identify roots in nonlinear systems used for initial relative orbit determination.

 Recommended further research is to establish simple rules for stability assessment of

physical systems using eigenvalues from differential and algebraic equation sets. Such rules

exist for ordinary differential equation sets as to where eigenvalues fall in a complex plane, but

computational expense for conversion from DAE to ODE format can be significant. Patterns of

DAE eigenvalues for stable configurations were identified in Chapter 4 making such an

investigation appear plausible. Another recommendation is to develop a user friendly interface

www.manaraa.com

145

making path following techniques for identification of equilibrium and solving of general

systems of nonlinear equations more practical. This enhancement is seen as a necessary step if

such a procedure were ever adopted in commercial software. Users should be able to easily plot

selected variables and specify a range for the arc-length and unknown scalar parameter lambda

needed to initialize the procedure. Methods for varying arc-length, stopping, reversing, or

restarting the solver during path following of solution curves should also be provided.

www.manaraa.com

146

BIBLIOGRAPHY

[1] K. J. Bathe, Finite Element Procedures, Klaus-Jürgen Bathe, 2006.

[2] R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Applications of Finite

Element Analysis, fourth ed., Wiley, 2002.

[3] R. de Borst, M. A. Crisfield, J. J. C. Remmers, C. V. Verhoosel, Non-linear Finite Element

Analysis of Solids and Structures, second ed., Wiley, 2012.

[4] A. Shabana, Computational Dynamics, third ed., Wiley, 2010.

[5] A. Shabana, Dynamics of Multibody Systems, fourth ed., Cambridge University Press,

2013.

[6] O. Bauchau, Flexible Multibody Dynamics (Solid Mechanics and Its Applications),

Springer, 2011.

[7] J. Nocedal, S. Wright, Numerical Optimization, second ed., Springer, 2006.

[8] C. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.

[9] Abaqus Analysis Users Guide, Dassault Systèmes Simulia Corp., 2014.

[10] ANSYS Mechanical APDL Theory Reference, ANSYS, Inc., 2013.

[11] MSC Nastran Nonlinear User’s Guide (SOL 400), MSC Software Corporation, 2016.

[12] About ADAMS Solver, MSC Software Corporation, 2016.

[13] RecurDyn / Solver Theoretical Manual, FunctionBay, Inc., 2012.

[14] A. R. Conn, N. I. M. Gould, P. L. Toint, Trust-Region Methods, SIAM, 2000.

[15] MATLAB R2015b Documentation, The MathWorks, Inc., 2015.

[16] C. G. Broyden, The convergence of a class of double-rank minimization algorithms, J. Inst.

Math. Appl. 6 (1970) 76-90.

[17] R. Fletcher, A new approach to variable metric algorithms, Comp. J. 13 (1970) 317-322.

[18] D. Goldfarb, A family of variable metric updates derived by variational means, Math.

Comp. 24 (1970) 23-26.

[19] D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math.

Comp. 24 (1970) 647-656.

[20] L. Komzsik, What Every Engineer Should Know About Computational Techniques of

Finite Element Analysis, first ed., CRC Press, 2005.

www.manaraa.com

147

[21] R. B. Schnabel, P. D. Frank, Tensor methods for nonlinear equations, J. Numer. Anal., 21,

(1984) 815-843.

[22] A. Bouaricha, R. B. Schnabel, Tensor methods for large sparse systems of nonlinear

equations, J. Math. Progr., 82 (1998) 377-400.

[23] A. Bouaricha, Tensor-Krylov methods for large nonlinear equations, J. Comput. Optim.

Appl., 5 (1996) 207-232.

[24] B. W. Bader, Tensor-Krylov methods for solving large-scale systems of nonlinear

equations, in: Sandia Report SAND2004-1837, 2004.

[25] A. Krylov, Professor Krylov's Navy: Memoir of a Naval Architect, Magnet Publishing,

2014.

[26] M. Hestenes, E. Steifel, Methods of conjugate gradient for solving linear systems, J. Res.

Natl. Bur. Stand., 49 (1952) 409-436.

[27] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, J. Sci. Stat. Comp., 7 (1986) 856-869.

[28] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, 2003.

[29] E. Riks, The application of newton’s method to the problem of elastic stability, J. Appl.

Mech., 39 (1972), 1060-1066.

[30] G. A. Wempner, Discrete approximations related to nonlinear theories of solids, Int. J.

Solids Struct. 7 (1971) 1581-1599.

[31] M. A. Crisfield, A fast incremental / iterative solution procedure that handles snap-through,

Comput. Struct. 13 (1981) 55-62.

[32] E. Ramm, Strategies for tracing the nonlinear response near limit points, in: Proceedings of

the Europe-U.S. Workshop on Nonlinear Finite Element Analysis in Structural Mechanics,

1981.

[33] M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures, Volume 1:

Essentials, Wiley, 1991.

[34] M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures, Volume 2:

Advanced Topics, Wiley, 1997.

[35] Nonlinear finite element methods, course notes for ASEN 6107,

http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/Home.html, (accessed

03.17.2017).

http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/Home.html

www.manaraa.com

148

[36] K. J. Bathe, E. Dvorkin, On the automatic solution of nonlinear finite element equations,

Comput. Struct., 17 (1983) 871-879.

[37] E. L. Allgower, K. Georg, Numerical Continuation Methods: An Introduction, Springer

Series in Computational Mathematics, Vol. 13, Springer Berlin Heidelberg, 1990.

[38] E. L. Allgower, K. Georg, Numerical Path Following, Handbook of Numerical Analysis,

Vol. V, Techniques of Scientific Computing (Part 2), Elsevier Science, 1997.

[39] B. Barney, Introduction to Parallel Computing, Lawrence Livermore National Laboratory,

2016. https://computing.llnl.gov/tutorials/parallel_comp/, (accessed 02.06.17).

[40] OpenMP, http://www.openmp.org/, (accessed 03.22.2017).

[41] MPI Forum, http://mpi-forum.org/, (accessed 03.22.2017).

[42] F. Darema, SPMD Computational Model, Encyclopedia of Parallel Computing, 2011, pp.

1933-1943.

[43] A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing, second

ed., Pearson, 2003.

[44] N. Matloff, Programming on Parallel Machines, University of California, Davis, 2016,

http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf, (accessed 02.06.17).

[45] E. Riks, An incremental approach to the solution of snapping and buckling problems, Int. J.

Solids Struct., 15 (1979) 529-551.

[46] E. Riks, Some computational aspects of the stability analysis of nonlinear structures, Comp.

Meth. Appl. Mech. Eng., 47 (1984) 219-259.

[47] G. Powell, J. Simons, Improved iterative strategy for nonlinear structures, Int. J. Numer.

Meth. Eng., 17 (1981) 1455-1467.

[48] MATLAB Parallel Computing Toolbox Tutorial,

http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/matlab-pct/,

(accessed 02.06.17).

[49] C. Moler, Parallel MATLAB: Multiple processors and multiple cores, MathWorks, 2007,

https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-

processors-and-multiple-cores.html, (accessed 02.06.17).

[50] MATLAB Answers, http://www.mathworks.com/matlabcentral/answers/95958-which-

matlab-functions-benefit-from-multithreaded-computation, (accessed 02.06.17).

http://www.openmp.org/
http://mpi-forum.org/
http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/matlab-pct/
https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-and-multiple-cores.html
https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-and-multiple-cores.html
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation

www.manaraa.com

149

[51] G. Rose, D. Nguyen, B. Newman, Implementing an arc-length method for a robust

approach in solving systems of nonlinear equations, in: IEEE Southeast Conference, 2016.

[52] L. Meirovitch, Methods of Analytical Dynamics, Dover Publications Inc., 2003.

[53] D. Negrut, A. Dyer, ADAMS/Solver Primer, MSC Software Corporation, 2004.

[54] U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equations and

Differential-Algebraic Equations, SIAM, 1998.

[55] L. Meirovitch, Fundamentals of Vibrations, McGraw-Hill, 2001.

[56] M. Menrath, Stability criteria for nonlinear fully implicit differential-algebraic systems,

PhD Dissertation, University in Cologne, Germany, 2011.

[57] D. Negrut, J. Ortiz, On an Approach for the Linearization of the Differential Algebraic

Equations of Multibody Dynamics, in: Proceedings of the ASME/IEEE International

Conference on Mechatronic and Embedded Systems and Applications, 2005.

[58] G. Rose, D. Nguyen, B. Newman, Parallel Computation of the Jacobian Matrix for

Nonlinear Equation Solvers Using MATLAB, NASA/TM-2017-219655, 2017.

[59] J. Ortiz, Introduction to Adams/Solver C++, Charts from the 2011 Adams user meeting,

Munich, Germany, 2011.

[60] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in Fortran 77: The

Art of Scientific Computing, second ed., Press Syndicate of the University of Cambridge,

1997.

[61] R. Neidinger, Introduction to automatic differentiation and MATLAB object-oriented

programming, SIAM Review, Vol. 52, No. 3, (2010) 545-563.

[62] R. Bartlett, D. Gay, E. Phipps, Automatic differentiation of C++ codes for large-scale

scientific computing, in: International Conference on Computational Science, 2006, pp.

525-532.

[63] ADIFOR, http://www.anl.gov/technology/project/adifor-automatic-differentiation-fortran-

77, (accessed 02.06.17).

[64] J. Gilbert, C. Moler, R. Schreiber, Sparse matrices in MATLAB: Design and

implementation, J. Matrix Anal. Appl. 13 (1992) 333-356.

[65] P.R. Escobal, Methods of Orbit Determination, John Wiley & Sons, 1965.

[66] B. Newman, T.A. Lovell, E. Pratt, Second order nonlinear initial orbit determination for

relative motion using Volterra theory, Adv. Astronaut. Sci., 152 (2014) 1253-1272.

http://www.anl.gov/technology/project/adifor-automatic-differentiation-fortran-77
http://www.anl.gov/technology/project/adifor-automatic-differentiation-fortran-77

www.manaraa.com

150

[67] M.T. Stringer, B. Newman, T.A. Lovell, A. Omran, Analysis of a new nonlinear solution of

relative orbital motion, Proceedings of the 23rd International Symposium on Space Flight

Dynamics, 2012.

[68] B. Newman, T.A. Lovell, E. Pratt, E. Duncan, Quadratic hexa-dimensional solution for

relative orbit determination - revisited, Adv. Astronaut. Sci., 155 (2015) 3359-3376.

www.manaraa.com

151

APPENDIX A

MATLAB CODE FOR NEWTON-RAPHSON METHOD

function [u] = newton(u_0,lambda) % Newton-Raphson method

u_i = u_0; % initial guess
conv = 0; % convergence criteria, 1 = yes, 0 = no
iter = 0; % starting iteration count

 while conv == 0 % iteration starts to determine new u

 [K_i,fu_i,F] = sys_eq(u_i); % system data for displacement u_i
 R_i = lambda*F - fu_i; % imbalance at state (i)
 du_i = (K_i)\R_i; % du_i = inv(K_i)*R_i;

 if norm(du_i)/norm(u_i) < 1.0e-8
 conv = 1; % converged
 elseif iter > 50 % set iteration limit
 break;
 else
 u_i = u_i + du_i;
 iter = iter + 1;
 end

 end

if conv == 1 % converged
 u = u_i; % new equilibrium displacement
else
 [row,col] = size(u_i);
 u = NaN*ones(row,col); % NaN for convergence failure
end

www.manaraa.com

152

APPENDIX B

MATLAB CODE FOR ARC-LENGTH METHODS

function [u,lambda] = arclength(arcL,u_0,lambda_0,method)

% Arc-length method
% arcL - user specified arc-length
% u_0 - guessed or initial state
% lambda_0 - guessed or initial parameter

[K_0,~,F] = sys_eq(u_0); % output system data for point u_0

[row,col] = size(u_0);

%% find starting iteration point at end of arc-length

detK_0 = det(K_0); % matrix determinant
del_lambda_g = sign(detK_0); % +/- slope for arc-length
du_g = K_0\(del_lambda_g*F); % du_g = inv(K_0)*del_lambda_g*F;
arcL_g = sqrt(del_lambda_g^2 + du_g'*du_g);
del_lambda_0 = (arcL/arcL_g)*del_lambda_g;
du_0 = (arcL/arcL_g)*du_g;
lambda_i = lambda_0 + del_lambda_0; % lambda at end of arc-length
u_i = u_0 + du_0; % u at end of arc-length
r_i = [du_0; del_lambda_0]; % store vector defining arc-length
L_squared = r_i'*r_i; % arc-length magnitude

%% begin iterations to determine equilibrium point

conv = 0; % convergence criteria
iter = 1; % starting iteration count

while conv == 0

 r_p = r_i; % previous vector for arc-length
 [K_i,fu_i,F] = sys_eq(u_i); % output system data for point u_i
 R_i = lambda_i*F - fu_i; % imbalance at state (i)
 du_I = K_i\F; % du_I = inv(K_i)*F;
 du_II = K_i\R_i; % du_II = inv(K_i)*R_i;

% %%%

if method == 1 % spherical iteration path

 c(1) = 1 + du_I'*du_I;
 c(2) = 2*(r_p(row + 1) + r_p(1:row)'*du_I + du_I'*du_II);
 c(3) = 2*r_p(1:row)'*du_II + du_II'*du_II;
 del_lambda_t = roots(c);

www.manaraa.com

153

 if isreal(del_lambda_t) == 0
 del_lambda_t = real(del_lambda_t); % use with caution
 fprintf('Complex roots for iteration %g\n',iter)
 end
 du_t1 = du_II + del_lambda_t(1)*du_I;
 du_t2 = du_II + del_lambda_t(2)*du_I;
 r_t1 = r_p + [du_t1; del_lambda_t(1)];
 r_t2 = r_p + [du_t2; del_lambda_t(2)];
 cos_theta1 = (r_p'*r_t1)/L_squared;
 cos_theta2 = (r_p'*r_t2)/L_squared;

 if cos_theta1 > cos_theta2
 dui = du_t1;
 del_lambdai = del_lambda_t(1);
 else
 dui = du_t2;
 del_lambdai = del_lambda_t(2);
 end

 du_i = dui;
 del_lambda_i = del_lambdai;
 r_i = r_p + [du_i; del_lambda_i]; % updated vector

elseif method == 2 % normal iteration path

 del_lambda_i = -(du_0'*du_II)/(du_0'*du_I + del_lambda_0);
 du_i = du_I * del_lambda_i + du_II;

end

% %%%

 if norm(du_i)/norm(u_i) < 1.0e-6 || abs(del_lambda_i)/abs(lambda_i) <
1.0e-6
 conv = 1; % converged
 elseif iter > 100
 break; % exit loop for specified iteration limit
 else
 u_i = u_i + du_i;
 lambda_i = lambda_i + del_lambda_i;
 iter = iter + 1;
 end

end

if conv == 1 % converged
 u = u_i; % new equilibrium displacement
 lambda = lambda_i; % new equilibrium load factor
 %R_i
else
 u = NaN*ones(row,col); % NaN for convergence failure
 lambda = NaN;
end

www.manaraa.com

154

APPENDIX C

MATLAB CODE FOR SOLVING A NONLINEAR SYSTEM

% Sample code for solving nonlinear system of equations
% USER INPUT: 3DOF example

dlambda = 1; % search increment for RHS solution
u = [2;-2;2]; % initial guess or known state
lambda = 0; % initial guess or known RHS solution
N = 5; % search limit

figure(1); hold on; xlabel('u1'); ylabel('lambda');
figure(2); hold on; xlabel('u2'); ylabel('lambda');
figure(3); hold on; xlabel('u3'); ylabel('lambda');

%% Implement Newton-Raphson method

for i = 1:N
 lambda = lambda + dlambda; % next value for parameter
 u_0 = u; % initial guess for displacement
 [u] = newton(u_0, lambda);
 if isnan(u) == 1
 disp('Convergence failure, switching to arc-length')
 break;
 elseif isreal(u) == 0
 disp('Complex root, switching to arc-length')
 break;
 end
 figure(1); plot(u(1),lambda,'ro'); % plot point
 figure(2); plot(u(2),lambda,'ro'); % plot point
 figure(3); plot(u(3),lambda,'ro'); % plot point
end

u = u_0; % final state obtained from NR method
lambda = lambda - dlambda; % final RHS solution from NR method

%% Implement the arc-length method
method = 1; % 1 - sphere, 2 - plane
arcL = 0.5; % specified arc-length to follow solution curve
N = 200;

if method == 1
 disp('Perform arclength on sphere')
elseif method == 2
 disp('Perform arc-length on normal plane')
end

u_0 = u; % guess based on previous state
lambda_0 = lambda; % guess based on previous RHS
[u,lambda] = arclength(arcL,u_0,lambda_0,method);
%arcL = -arcL; % uncomment and re-run to follow opposite direction

www.manaraa.com

155

iter = 0;
for i = 1:N
 iter = iter + 1;
 u_0 = u; % guess based on previous state
 lambda_0 = lambda; % guess based on previous RHS
 [u,lambda] = arclength(arcL,u_0,lambda_0,method);
 if sign(lambda) ~= sign(lambda_0)
 u_zero = newton(u_0, 0) % perform NR at zero-crossings
 end
 figure(1); plot(u(1),lambda,'ro'); % plot point
 figure(2); plot(u(2),lambda,'ro'); % plot point
 figure(3); plot(u(3),lambda,'ro'); % plot point
end

www.manaraa.com

156

APPENDIX D

MATLAB CODE FOR DEFINING A NONLINEAR SYSTEM

function [K,fu,F] = sys_eq(u) % Define system of nonlinear equations
% System can be general or based on finite element model. K is tangent
% stiffness or Jacobian matrix. This is the slope of tangent hyperplane at
% displacement u. fu is system value at state u. F is a reference vector
% for scalar lambda.

% 3DOF example

K = zeros(3,3);

K(1,1) = 2*u(1)*(u(2)^3)*u(3);
K(1,2) = 3*(u(2)^2)*(u(1)^2)*u(3) + 4;
K(1,3) = 0.5*(u(3)^-0.5) + (u(1)^2)*(u(2)^3) - (u(3)^-2);
K(2,1) = (u(3)^3) + 3;
K(2,2) = 0.5*((-u(3)*u(2))^-0.5)*(-u(3)) + 2*(u(2)^-3);
K(2,3) = 0.5*((-u(3)*u(2))^-0.5)*(-u(2)) + 3*(u(3)^2)*u(1);
K(3,1) = u(2)*u(3) + 2*u(1)*u(3) - 3*u(2);
K(3,2) = u(1)*u(3) + 2*u(2)*u(3) -3*u(1);
K(3,3) = u(1)*u(2) + (u(2)^2) + (u(1)^2);

fu = zeros(3,1);

fu(1) = (u(3)^0.5) + (u(1)^2)*(u(2)^3)*u(3) + (u(3)^-1) + 4*u(2) + 17.75;
fu(2) = ((-u(3)*u(2))^0.5) + (u(3)^3)*u(1) - (u(2)^-2) + 3*u(1) - 135;
fu(3) = u(1)*u(2)*u(3) + (u(2)^2)*u(3) + (u(1)^2)*u(3) - 3*u(1)*u(2) -18;

F = [1;1;1];

www.manaraa.com

157

APPENDIX E

MATLAB CODE FOR PARALLEL JACOBIAN COMPUTATION

function J = par_jacobi_a(u_i,NP)

N = size(u_i,1);
C = ceil(N/NP);
index = ones(1,2*NP);
index(end) = N;
j = 2;

for i =1:NP-1
 index(j) = i*C;
 index(j+1) = index(j) + 1;
 if index(j) > N
 fprintf('invlid matrix partition of %g for NP = %g\n',index(j),NP)
 return
 elseif index(j+1) > N
 fprintf('invlid matrix partition of %g for NP = %g\n',index(j+1),NP)
 return
 end
 j = j + 2;
end
del = 1e-6;

spmd
 J = zeros(N,C); % distribute partitions across labs
 uperturb = u_i;
 fu_i = sys_eq(u_i);

 for j = 1:NP
 if labindex == j
 for i = index(j*2-1):index(j*2)
 uperturb(i) = uperturb(i) + del;
 fu_p = sys_eq(uperturb);
 if j == 1
 J(:,i) = (fu_p - fu_i)/del;
 else
 k = 2*labindex - 2;
 J(:,i - index(k)) = (fu_p - fu_i)/del;
 end
 uperturb(i) = u_i(i); %uperturb(i) - del;
 end
 end
 end
end

J = [J{1:NP}]; % convert from composite to double

www.manaraa.com

158

APPENDIX F

COPYRIGHTS

Chapter 3 subject to ©2016 IEEE. Reprinted, with permission, from G. Rose, D. Nguyen, B.

Newman, “Implementing an Arc-Length Method for a Robust Approach in Solving Systems of

Nonlinear Equations,” Proceedings of the 2016 IEEE Southeast Conference, Norfolk, Virginia

(March 30 – April 3, 2016).

A unique and expanded version of Chapter 4 has been accepted for publication under DOI:

10.1007/s11044-018-9618-7, "A path following method for identifying static equilibrium in

multi-body-dynamic systems" in Multibody System Dynamics by Springer. Chapter 4 is not

subject to copyright.

Chapter 5 has been previously published under NASA/TM-2017-219655, “Parallel Computation

of the Jacobian Matrix for Nonlinear Equation Solvers Using MATLAB,” and is not subject to

copyright.

www.manaraa.com

159

VITA

 Geoffrey Kenneth Rose has spent most of his life living in the Hampton Roads region of

Virginia. He began his career as a mechanical engineer with the Department of Navy in 1999,

became licensed as a Professional Engineer in 2004, and completed a Masters of Engineering

degree in 2005. He transferred to NASA Langley Research Center in 2008 and was accepted

into a Ph.D. program in the Mechanical and Aerospace Engineering Department at Old

Dominion University in 2010. The address of the department is 238 Kaufman Hall, Norfolk, VA

23529. Most of his career at NASA has been spent working on the design and analysis of

deployable structures for space.

	Old Dominion University
	ODU Digital Commons
	Fall 2017

	Computational Methods for Nonlinear Systems Analysis With Applications in Mathematics and Engineering
	Geoffrey Kenneth Rose
	Recommended Citation

	tmp.1519229153.pdf.GxjG2

