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ABSTRACT 

COMPUTATIONAL METHODS FOR NONLINEAR SYSTEMS ANALYSIS WITH 

APPLICATIONS IN MATHEMATICS AND ENGINEERING 

 

Geoffrey Kenneth Rose 

Old Dominion University, 2017 

Co-directors: Dr. Brett A. Newman 

 Dr. Duc T. Nguyen 

 

 

 An investigation into current methods and new approaches for solving systems of 

nonlinear equations was performed.  Nontraditional methods for implementing arc-length type 

solvers were developed in search of a more robust capability for solving general systems of 

nonlinear algebraic equations.  Processes for construction of parameterized curves representing 

the many possible solutions to systems of equations versus finding single or point solutions were 

established.  A procedure based on these methods was then developed to identify static 

equilibrium states for solutions to multi-body-dynamic systems.  This methodology provided for 

a pictorial of the overall solution to a given system, which demonstrated the possibility of 

multiple candidate equilibrium states for which a procedure for selection of the proper state was 

proposed.  Arc-length solvers were found to identify and more readily trace solution curves as 

compared to other solvers making such an approach practical.  Comparison of proposed methods 

was made to existing methods found in the literature and commercial software with favorable 

results.  Finally, means for parallel processing of the Jacobian matrix inherent to the arc-length 

and other nonlinear solvers were investigated, and an efficient approach for implementation was 

identified.  Several case studies were performed to substantiate results.  Commercial software 

was also used in some instances for additional results verification. 
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NOMENCLATURE 

 𝒇(𝒖)  System of nonlinear equations 𝑭  Reference vector 𝑖  Iteration count 𝑰  Identity matrix 𝑰𝑪𝑴  Inertia matrix 𝑱 or 𝑲  Jacobian or tangent stiffness of 𝒇(𝒖) 𝑴  Mass matrix 𝑹  Residual vector 𝒖  Vector of unknown variables 𝛥  Incremental change with respect to 𝜆 or 𝒖 𝜆  Scaling parameter 𝜦  Vector of Lagrange multipliers 𝜱  Vector of algebraic constraints 

  



www.manaraa.com

v 

 

TABLE OF CONTENTS 

 

Page 

LIST OF TABLES ....................................................................................................................... viii 

 

LIST OF FIGURES .........................................................................................................................x 

 

Chapter 

 

1. INTRODUCTION .....................................................................................................................1 

1.1 BACKGROUND MOTIVATION ......................................................................................1 

1.2 RESEARCH PROBLEM AND OBJECTIVES .................................................................3 

1.3 DISSERTATION OUTLINE .............................................................................................5 

 

2. LITERATURE REVIEW ..........................................................................................................8 

2.1 SOLVER OVERVIEW ......................................................................................................8 

2.2 PARALLEL COMPUTING .............................................................................................17 

2.3 COMMERCIAL SOFTWARE .........................................................................................19 

 

3. SOLVING GENERAL SYSTEMS OF EQUATIONS ...........................................................21 

3.1 INTRODUCTION ............................................................................................................21 

3.2 SOLVER THEORY AND BACKGROUND ...................................................................23 

3.3 SOLVER SUITE DEVELOPMENT AND IMPLEMENTATION .................................28 

3.4 DEMONSTRATION PROBLEMS ..................................................................................29 

3.5 CONCLUSIONS ..............................................................................................................35 

 

4. EQUILIBRIUM FOR MULTI-BODY-DYNAMIC SYSTEMS ............................................37 

4.1 INTRODUCTION ............................................................................................................37 

4.2 THEORY AND METHODS FOR PARAMETERIZED NEWTON-RAPHSON ...........41 

4.2.1  STEPWISE PROCEDURE FOR PARAMETERIZED NEWTON-RAPHSON ...42 

4.3 THEORY AND METHODS FOR TWO VARIATIONS OF ARC-LENGTH ...............43 



www.manaraa.com

vi 

 

Page 

4.3.1  ARC-LENGTH METHOD USING NORMAL ITERATION PATH ...................45 

4.3.1.1  STEPWISE PROCEDURE FOR ARC-LENGTH METHOD ON 

NORMAL PATH ....................................................................................................50 

4.3.2  ARC-LENGTH METHOD USING CIRCULAR ITERATION PATH ................51 

4.3.2.1  STEPWISE PROCEDURE FOR ARC-LENGTH METHOD ON 

CIRCULAR PATH .................................................................................................54 

4.4 METHODS FOR DERIVING GOVERNING EQUATIONS .........................................56 

4.5 SINGLE-DEGREE-OF-FREEDOM PENDULUM .........................................................60 

4.5.1  RESULTS FOR SINGLE-DEGREE-OF-FREEDOM PENDULUM ....................62 

4.6 SPRING SUPPORTED ARCH ........................................................................................68 

4.6.1  RESULTS FOR COLLAPSING ARCH ................................................................74 

4.6.2  RESULTS FOR NON-COLLAPSING ARCH ......................................................82 

4.7 PROPOSED PROCEDURE FOR IDENTIFYING STATIC EQUILIBRIUM ...............90 

4.8 CONCLUSIONS ..............................................................................................................92 

 

5. PARALLEL PROCESSING OF THE JACOBIAN ................................................................94 

5.1 INTRODUCTION ............................................................................................................94 

5.2 METHODS FOR COMPUTING THE JACOBIAN ........................................................97 

5.3 EQUATION THEORY AND BACKGROUND ............................................................101 

5.4 SERIAL CODE IMPLEMENTATION ..........................................................................104 

5.5 PARALLEL CODE IMPLEMENTATION ...................................................................107 

5.6 CODE TIMING RESULTS ............................................................................................109 

5.7 CONCLUSIONS ............................................................................................................113 

 

6. SPACECRAFT RELATIVE ORBIT DETERMINATION CASE STUDY .........................115 

6.1 INTRODUCTION ..........................................................................................................115 

6.2 PLANAR ORBIT ...........................................................................................................118 

6.3 SPACE ORBIT ...............................................................................................................133 

6.4 CONCLUSIONS ............................................................................................................142 

  



www.manaraa.com

vii 

 

Page 

7. CONCLUSIONS AND FURTHER RESEARCH .................................................................144 

 

BIBLIOGRAPHY ........................................................................................................................146 

 

APPENDICES 

A. MATLAB CODE FOR NEWTON-RAPHSON METHOD............................................151 

B. MATLAB CODE FOR ARC-LENGTH METHODS .....................................................152 

C. MATLAB CODE FOR SOLVING A NONLINEAR SYSTEM ....................................154 

D. MATLAB CODE FOR DEFINING A NONLINEAR SYSTEM ...................................156 

E. MATLAB CODE FOR PARALLEL JACOBIAN COMPUTATION ............................157 

F. COPYRIGHTS ................................................................................................................158 

 

VITA ............................................................................................................................................159 

  



www.manaraa.com

viii 

 

LIST OF TABLES 

 

Table Page 

1. Pendulum DAE eigenvalue quantity ........................................................................................66 

2. Pendulum ODE eigenvalues, Re ± Im (Hz) .............................................................................67 

3. Collapsing arch DAE eigenvalue quantity ...............................................................................79 

4. Candidate equilibrium states for collapsing arch .....................................................................79 

5. Strain energy (𝑁 ∙ 𝑚) for collapsing arch ................................................................................79 

6. Difference ratios with respect to state I for collapsing arch ....................................................80 

7. Collapsing arch ODE eigenvalues, Re ± Im (Hz) ....................................................................82 

8. Non-collapsing arch DAE eigenvalue quantity .......................................................................86 

9. Candidate equilibrium states for non-collapsing arch .............................................................87 

10. Strain energy (𝑁 ∙ 𝑚) for non-collapsing arch ........................................................................87 

11. Difference ratios with respect to state I for non-collapsing arch .............................................87 

12. Non-collapsing arch ODE eigenvalues, Re ± Im (Hz) ............................................................90 

13. Solution times using sparse and dense Jacobian (sec)  ..........................................................107 

14. Calculation of full Jacobian, dense composite format (sec) ..................................................112 

15. Calculation of full Jacobian, dense matrix format (sec) ........................................................112 

16. Calculation of block Jacobian, sparse matrix format (sec) ....................................................113 

17. Candidate states, curve 1........................................................................................................122 

18. Relative specific energy (𝑘𝑚2/𝑠2), curve 1 .........................................................................122 

19. Candidate states, curve 2........................................................................................................124 

20. Relative specific energy (𝑘𝑚2/𝑠2), curve 2 .........................................................................124 



www.manaraa.com

ix 

 

Table Page 

21. Candidate states .....................................................................................................................137 

22. Relative specific energy (𝑘𝑚2/𝑠2) .......................................................................................137 

  



www.manaraa.com

x 

 

LIST OF FIGURES 

 

Figure Page 

1. Equilibrium path exhibiting limit points and snap-through .....................................................23 

2. Newton-Raphson method for single-degree-of-freedom .........................................................25 

3. Arc-length method for single-degree-of-freedom ....................................................................27 

4. Program flowchart ...................................................................................................................28 

5. Intersecting surfaces (2 DOF) ..................................................................................................31 

6. Solutions for 𝜆 versus 𝑢1 (3 DOF) ...........................................................................................33 

7. Solutions for 𝜆 versus 𝑢2 (11 DOF) .........................................................................................35 

8. Calculation of ∆𝒖0 and ∆𝜆0 for single-degree-of-freedom system .........................................46 

9. Points on normal iteration path for single-degree-of-freedom system ....................................48 

10. Components of ∆𝒖𝑖 for single-degree-of-freedom system ......................................................49 

11. Points on circular iteration path for single-degree-of-freedom system ...................................56 

12. Single-degree-of-freedom pendulum .......................................................................................61 

13. Solution curves for single-degree-of-freedom pendulum ........................................................65 

14. Spring supported arch ..............................................................................................................69 

15. Dynamic simulation of collapsing arch ...................................................................................72 

16. Dynamic simulation of non-collapsing arch ............................................................................72 

17. Solution curve for bar one x position, 𝑘𝑠 = 17.5 𝑁/𝑚 ...........................................................76 

18. Solution curve for bar one y position, 𝑘𝑠 = 17.5 𝑁/𝑚 ...........................................................76 

19. Solution curve for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 ..................................................................77 

20. Additional solution curves for bar one x position, 𝑘𝑠 = 17.5 𝑁/𝑚 ........................................77 



www.manaraa.com

xi 

 

Figure Page 

21. Additional solution curves for bar one y position, 𝑘𝑠 = 17.5 𝑁/𝑚 ........................................78 

22. Additional solution curves for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 ...............................................78 

23. ODE static solution curve for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 ................................................81 

24. Total solution curve for bar one x position, 𝑘𝑠 = 87.6 𝑁/𝑚 ..................................................83 

25. Partial solution curve for bar one x position, 𝑘𝑠 = 87.6 𝑁/𝑚 ................................................84 

26. Total solution curve for bar one y position, 𝑘𝑠 = 87.6 𝑁/𝑚 ..................................................84 

27. Partial solution curve for bar one y position, 𝑘𝑠 = 87.6 𝑁/𝑚 ................................................85 

28. Total solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 .........................................................85 

29. Partial solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 .......................................................86 

30. ODE static solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 ................................................90 

31. Percent error vs. parameter ℎ for given function 𝑓 ..................................................................99 

32. Constraint force vs. time for double link system ...................................................................103 

33. Serial Jacobian computation using MATLAB .......................................................................105 

34. Parallel Jacobian computation using MATLAB ....................................................................109 

35. Solution curve 1 for deputy 𝑥0 ...............................................................................................120 

36. Solution curve 1 for deputy 𝑦0 ...............................................................................................120 

37. Solution curve 1 for deputy �̇�0 ...............................................................................................121 

38. Solution curve 1 for deputy �̇�0 ...............................................................................................121 

39. Solution curve 2 for deputy 𝑥0 ...............................................................................................122 

40. Solution curve 2 for deputy 𝑦0 ...............................................................................................123 

41. Solution curve 2 for deputy �̇�0 ...............................................................................................123 

42. Solution curve 2 for deputy �̇�0 ...............................................................................................124 



www.manaraa.com

xii 

 

Figure Page 

43. Extended solution curve 1 for deputy 𝑥0 ...............................................................................125 

44. Extended solution curve 1 for deputy 𝑦0 ...............................................................................126 

45. Extended solution curve 1 for deputy �̇�0 ...............................................................................126 

46. Extended solution curve 1 for deputy �̇�0 ...............................................................................127 

47. Extended solution curve 2 for deputy 𝑥0 ...............................................................................127 

48. Extended solution curve 2 for deputy 𝑦0 ...............................................................................128 

49. Extended solution curve 2 for deputy �̇�0 ...............................................................................128 

50. Extended solution curve 2 for deputy �̇�0 ...............................................................................129 

51. Solution curve 1 difference ratio for positive 𝜆 .....................................................................130 

52. Solution curve 1 difference ratio for negative 𝜆 ....................................................................130 

53. Solution curve 2 difference ratio for positive 𝜆 .....................................................................131 

54. Solution curve 2 difference ratio for negative 𝜆 ....................................................................131 

55. Solution curve for deputy 𝑥0 ..................................................................................................134 

56. Solution curve for deputy 𝑦0 ..................................................................................................134 

57. Solution curve for deputy 𝑧0 ..................................................................................................135 

58. Solution curve for deputy �̇�0 ..................................................................................................135 

59. Solution curve for deputy �̇�0 ..................................................................................................136 

60. Solution curve for deputy �̇�0 ..................................................................................................136 

61. Extended solution curve for deputy 𝑥0 ..................................................................................138 

62. Extended solution curve for deputy 𝑦0 ..................................................................................138 

63. Extended solution curve for deputy 𝑧0 ..................................................................................139 

64. Extended solution curve for deputy �̇�0 ..................................................................................139 



www.manaraa.com

xiii 

 

Figure Page 

65. Extended solution curve for deputy �̇�0 ..................................................................................140 

66. Extended solution curve for deputy �̇�0 ..................................................................................140 

67. Difference ratio for positive 𝜆 ................................................................................................141 

68. Difference ratio for negative 𝜆 ...............................................................................................142 

 



www.manaraa.com

1 
 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 BACKGROUND MOTIVATION 

 

 Solving systems of nonlinear equations lies at the core of many finite element analysis 

(FEA) and multi-body-dynamics (MBD) software codes.  Solution strategies for equilibrium 

typically involve solving these equations iteratively through linearization or Taylor series 

expansion using some variant of a Newton-Raphson solver [1-6].  This technique requires 

computation of derivatives for the Jacobian or tangent stiffness matrix for construction of a local 

linear model about a known operating point or solution.  Common variations available for this 

type solver include full [1-3], modified [1-3], quasi-Newton [1-3,7], inexact-Newton [8], tensor 

[7], and arc-length [1-3].  Full methods update the Jacobian at every iteration whereas modified 

methods hold the Jacobian constant or minimize updates to reduce the associated computational 

cost.  This simplification results in increased iterations required for convergence or finding a 

solution to the nonlinear system but does so in a cheaper sense which typically increases solver 

speed or efficiency.  Quasi-Newton methods, on the other hand, update the Jacobian using 

approximations and typically reduce iterations as compared to the modified method but can have 

issues with convergence as the Jacobian contains error.  Line search methods [7] can be included 

to help with convergence but come with added cost.  Inexact methods utilize an iterative versus a 

direct solver for the linearized system that avoids factorizing the Jacobian during iterations.  This 

alteration can help with solver speed as systems become large.  Tensor methods use an extended 
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form of a Taylor series expansion and supplement first-order linear models with approximations 

for second-order derivatives in an attempt to improve the local model.  Iterations for 

convergence can be reduced, but this adds to computational expense per iteration.  Arc-length 

solvers include an additional constraint equation with the Newton-Raphson method and can be 

more robust due to an additional unknown parameter used during search for a solution.  They 

may also be referred to as continuation or path following methods due to their natural ability to 

follow an equilibrium path with changes in sign for slope or direction.  Updates to the Jacobian 

in this case can be made at every iteration for a standard approach or using approximations for a 

quasi-Newton method.  The Jacobian can be also be held constant or updated periodically for a 

modified approach. 

Review of documentation for popular FEA [9-11] and MBD [12,13] commercial software 

codes revealed that the Newton-Raphson method with selective updating of the Jacobian is the 

standard solver for use in nonlinear static FEA and static equilibrium for MBD.  Other FEA 

solver options included quasi-Newton and arc-length.  Tensor methods were not identified as 

being used in FEA solvers but were found in a MBD code [12] as a solver option for static 

equilibrium.  Arc-length solvers were used in FEA codes for post-buckling analysis of structures 

that “snap” into new geometric configurations from sudden changes in force-displacement 

relations, but these solvers were not being used otherwise.  Trust-region type solvers [7,14] 

developed primarily for numerical optimization were found implemented as an advanced 

alternative to Newton-Raphson type solvers in the event of convergence failure in MBD [12,13] 

codes in search of static equilibrium.  These type solvers were not found being implemented for 

general use in FEA, but scientific computing software MATLAB [15] included a version of this 

type solver specifically for solving general systems of nonlinear equations while not including 
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any versions of Newton-Raphson.  Trust-region solvers are more robust than most Newton-

Raphson type solvers as they are able to handle cases where the Jacobian becomes singular.  

Singularity typically occurs at limit points in an analysis where any of the independent variables 

go from increasing in magnitude to decreasing or vice versa.  This behavior can cause Newton-

Raphson type solvers to fail due to an ill conditioned Jacobian or search for solutions in a 

direction away from the equilibrium path.  Arc-length solvers are unique as they are able to 

follow equilibrium paths by specifying iteration path slope which facilitates stepping over limit 

points to avoid this issue. 

 

1.2 RESEARCH PROBLEM AND OBJECTIVES 

 

Based on identification of solver types and use, arc-length type solvers were chosen for 

investigation and comparison to state-of-the-art solvers and methods being used in commercial 

software.  Primary use of these type solvers for post-buckling structural analysis in FEA left 

other areas open to investigation for possible research contributions to solving general systems of 

nonlinear algebraic equations.  The problem of finding static equilibrium was also identified as 

particularly challenging from developers of MBD codes [12,13] such that arc-length solvers 

were used to further develop solution methods to this specific class of problem as well.  

Comparisons of proposed methods using arc-length solvers to current practices were made 

through programming of a nonlinear solver suite using MATLAB and running a series of 

specific problems or case studies.  Functions or subroutines for previously mentioned solver 

types were developed with exception to trust-region.  The trust-region type solver inherent to the 

MATLAB software was used in this case.  Several general and MBD based nonlinear systems 
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were chosen for evaluation with particular attention paid to robustness or whether specific solver 

types could identify a solution or maintain track of curves representing solutions to given 

systems.  Case studies for identifying roots in nonlinear systems used to determine initial 

conditions for relative orbits for spacecraft were also performed.  Path following solver strategies 

based on arc-length solvers were found to be more robust as compared to previous work where 

additional roots or solutions to the nonlinear systems were found. 

The final part of the investigation involved identifying a more efficient means of 

numerically computing the Jacobian matrix through parallel processing.  The Jacobian is a 

matrix of first-order partial derivatives inherent to linearization and nonlinear solver algorithms 

based on this principle.  Computation and factorization of the matrix is performed during solver 

iterations resulting in a timing or speed bottleneck where increased solver efficiency is obtained 

through decreasing such operations.  Performance gains through parallel processing typically 

become more apparent as systems increase in size; however, lower bounds to the size of systems 

to which this first becomes beneficial may not necessarily be known.  A system of 

interconnected links was used as a benchmark problem to identify such lower bounds due to 

specific reference in a MBD user manual [12].  This particular system was identified as not 

exhibiting parallel processing performance gains for a given minimum scale and this scale was 

used to set a goal for parallel code speedup.  Methods were then developed in MATLAB that 

demonstrated initial performance gains at even smaller scales.  Results for a range of system 

sizes and processing methods were quantified and compared to non-parallel or serial processing 

results.  The timing study was completed on a multi-core shared memory personal computer 

(PC) using MATLAB which included underlying parallel operations.  These hidden operations 
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added to the challenge of achieving code speedup as the underlying parallel operations left little 

room for improvement. 

The primary objective of this research effort was to identify state-of-the-art practices for 

solving systems of nonlinear equations and develop new methodologies for improvement of both 

robustness and efficiency.  Focus of the study remained on developing solution strategies for 

systems of nonlinear algebraic equations and nonlinear differential and algebraic equations 

(DAEs) with regard to static equilibrium.  User documentation of popular commercial software 

codes was included as part of a literature review for identifying what is considered to be state-of-

the-art.  Several sample problems or case studies were developed for comparison of proposed 

solver strategies to existing methods in terms of robustness or capability to solve a given 

problem and efficiency where the primary metric was solve time.  Case studies for robustness 

involved finding solution to general mathematical systems of nonlinear algebraic equations and 

static equilibrium for nonlinear MBD systems.  Efficiency was addressed through developing a 

method of parallel processing of the Jacobian matrix that demonstrated a timing speedup as 

compared to a serial version. 

 

1.3 DISSERTATION OUTLINE 

 

Chapter 2 contains an overview of literature used to support the study.  Popular 

commercial software relevant to systems of nonlinear equations was identified and user 

documentation was consulted to identify solution procedures.  These procedures are assumed to 

be state-of-the-art based on the assumption that developers strive to produce software that 

maximizes robustness, efficiency, or performance in general. 
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Chapter 3 covers use of the arc-length method for solving general systems of nonlinear 

equations and compares the solver in terms of robustness to other Newton-Raphson based 

solvers and MATLAB’s fsolve [15] routine.  Accomplished work in this area has been previously 

published and the reference has been included in the copyright notice in the Appendix.  The 

metrics used for robustness are the solvers ability to identify a solution from an initial guess and 

ability to maintain track of a series of solutions along a path once a starting point was found. 

Chapter 4 encompasses work in Chapter 3 but is specific to nonlinear equations for MBD 

systems and the search for static equilibrium.  Accomplished work may become subject to 

copyright and reference has been included in the copyright notice in the Appendix.  Candidate 

equilibrium configurations for sample systems were identified through plotting of the solution 

with respect to given independent variables.  A procedure for selecting the proper equilibrium 

configuration based on energy and the use of solution curves is proposed.  This procedure was 

shown to provide for a more comprehensive and systematic approach in identifying true 

equilibrium as compared to methods currently being used in commercial MBD software. 

Chapter 5 addresses methods of parallel processing for computation of the Jacobian 

matrix inherent to Newton-Raphson based solvers.  Accomplished work has been previously 

published and reference has been included in the copyright notice in the Appendix.  MATLAB 

was used to complete this task for consistency with the previously developed nonlinear solver 

suite.  A specific system of interconnected links was identified in MSC ADAMS user 

documentation [12] as a performance challenge by which to first demonstrate parallel processing 

speedup for a given minimum system size.  The objective of achieving speedup of computer 

code was met and expected performance gains for MATLAB based applications running on 

shared memory personal computers were quantified. 
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Chapter 6 contains a case study addressing application of an arc-length method for 

solving spacecraft relative orbit determination equation sets.  Path following of solution curves 

was demonstrated to be more robust in the identification of roots used for orbit initial conditions 

as compared to standard solver techniques.  Identification of all roots is critical for this particular 

application as only one root represents initial conditions for an orbit of non-zero velocity and 

minimum energy. 

Chapter 7 summarizes conclusions and findings.  Recommended further research is 

identified including the need for implementing arc-length based solver schemes in a more 

automated manner for practical use. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 Solution to nonlinear systems of equations lies at the core of many computer software 

codes used in science and engineering.  Such systems can often pose a significant challenge for 

finding and identifying solutions using existing mathematical tools.  Review of nonlinear 

equation solver theory, parallel computing, and current software implementations was performed 

to help identify strengths and weaknesses of various solver strategies being used.  Based on this 

review, solution procedures with possible areas for improvement were identified and used to 

define research objectives.  This identification included evaluation and comparison of solver 

strategies used for general systems of nonlinear equations, strategies for obtaining equilibrium in 

MBD systems, and parallel computation of the Jacobian matrix identified as a speed bottleneck 

on shared memory personal computers.  Work is documented in Chapters 3 through 6 with 

sample versions of MATLAB computer code contained in the appendix. 

 

2.1 SOLVER OVERVIEW 

 

 The Newton-Raphson method and closely related techniques have been identified by 

Bathe [1] as the most frequently used iteration schemes for solution to nonlinear finite element 

based equations.  Further stated is that the Newton-Raphson method represents the primary 

solution scheme for FEA.  The major computational cost per iteration was identified as 

calculation and factorization of the tangent stiffness or Jacobian matrix and that the use of a 
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modified Newton-Raphson method can be effective in reducing this cost.  A method that 

computes and factorizes the Jacobian once using a system’s initial configuration and holds it 

constant during iterations is referred to as the “initial stress” method.  Methods that update the 

Jacobian periodically during iterations are referred to as “modified” methods.  Similar 

terminology is used in a text by de Borst et al. [3].  Computational cost associated with the 

Jacobian is noted similar to Bathe and it is assumed that limited variation of the Jacobian 

between subsequent iterations is what makes modified approaches practical.  The slowing down 

of convergence or increase in iterations for the modified methods is noted as acceptable as it is 

offset by gains or performance in computation time.  Cook et al. [2] state that computational cost 

is usually lowest by selectively updating the Jacobian.  The initial stress method is here presented 

as a form of the modified Newton-Raphson method versus a unique procedure.  Similar to Bathe, 

potential issues with convergence are identified due to lack of Jacobian updates during iterations. 

 Shabana [5] provides for several solution strategies that can be used for solving systems 

of nonlinear DAEs found in MBD codes.  Solution strategies, whether static, kinematic, or 

dynamic, all involve use of the Newton-Raphson method.  While systems of DAEs could be 

solved using only the Newton-Raphson method for a dynamic solution procedure, Shabana 

proposes using this for the constraint equations only followed by a direct numerical integration 

scheme for the dynamics portion.  Shabana covers a variety of these direct integration procedures 

and processes that transform equations to a state space representation for use with these type 

solvers [4].   This study, however, will not cover dynamic solvers in detail; rather, focus will 

remain on solution strategies for identifying static equilibrium.  Shabana [4] notes that it is 

desirable in many applications to obtain a static equilibrium configuration prior to a dynamic 

simulation.  This desirability is due to differences between the as modeled and equilibrium 
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configurations that are likely to occur.  Difficulty with obtaining solutions for static equilibrium 

are also addressed when Lagrange multipliers or constraint forces are included as unknowns.  In 

his proposed algorithm for solving DAEs, he states that initial conditions must provide a good 

approximation of the exact initial configuration.  This approximation would of course effect 

convergence and probability of finding a solution for any of the Newton-Raphson based solvers.  

Specific types or classes of Newton-Raphson methods are not discussed and reference to arc-

length, continuation, or path following methods for static equilibrium is not made.  This 

exclusion is also the case for solver strategies covered by Bauchau [6].  Mention of a modified 

Newton-Raphson method is discussed in reference to the possibility of considerable 

computational savings as compared to the standard or full method, but reference to other static 

type solvers for nonlinear equations is not made.  Similar to Shabana, Bauchau also mentions 

carrying out a static equilibrium analysis prior to start of a dynamic simulation. 

 Quasi-Newton methods are an alternative to the full and modified forms of the Newton-

Raphson method.  These methods use an approximation for the Jacobian matrix by calculating it, 

or more specifically its inverse, in an inexact sense.  Cook et al. [2] refer to the approximated 

Jacobian as the secant stiffness matrix versus tangent stiffness matrix as computation involves 

use of a previously known solution or point on an equilibrium path versus a single tangent point 

only.  One of the most popular methods cited by de Borst et al. [3] is the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) [16-19] update.  Caution is advised when using this method as 

convergence behavior deteriorates as compared to a Newton-Raphson method.  Reports of erratic 

behavior and lack of numerical stability were also identified resulting in a decrease in popularity 

of quasi-Newton methods in more recent years.  Although several quasi-Newton type methods 

exist, Bathe [1] reports that the BFGS method appears to be the most effective.  Issues with 
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numerical stability are addressed through incorporation of a line search strategy that becomes an 

integral part of the overall solution procedure, but computational cost is increased as line 

searches scale candidate solutions in an iterative fashion in an attempt for convergence or further 

minimization of error.  A detailed derivation of the BFGS method including a computational 

example can be found in a text by Komzsik [20]. 

 Tensor methods use an extended form of a Taylor series expansion and augment first-

order linear models with an approximation for the second-order term.  Schnabel and Frank [21] 

introduced them as a new class of methods designed specifically for solving systems of nonlinear 

equations.  They are intended to improve upon Newton-Rapson based methods and handle cases 

where the Jacobian is singular or ill conditioned.  The second-order term, often called the 

Hessian, is formed by interpolating function values from previous iterations similar to what is 

done for quasi-Newton methods.  According to Bouaricha and Schnabel [22], use of one or two 

past iteration points is sufficient.  One of the major contributions of tensor methods according to 

Bouaricha [23] has been its greater robustness, and experimental results show that tensor 

methods consistently solve a wider range of problems as compared to the Newton-Raphson 

based methods.  Most recent advancements for tensor methods appear to have been completed by 

Bader [24].  Focus is on large-scale systems and methods are referred to as tensor-Krylov similar 

to terminology used by Bouaricha [23] in an earlier publication.  Krylov refers to a class of linear 

solvers named after Russian mathematician Aleksey Krylov [25].  Krylov solvers are typically 

used for large-scale systems as they avoid matrix factorization and solve linear systems 

iteratively to save on computational cost.  Two of the most popular Krylov solvers are conjugate 

gradient (CG) [26] for use with symmetric matrices and generalized minimal residual (GMRES) 

[27] for use with nonsymmetric matrices. 
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 Krylov solvers used in combination with the Newton-Raphson method lead to a specific 

class of solvers referred to as inexact-Newton methods.  The term inexact is used as a solution to 

the linearized system performed during iterations of the Newton-Raphson method contains its 

own convergence criteria and therefore has some error.  A detailed discussion on inexact-Newton 

methods can be found in a text by Kelly [8]; it also includes separate chapters on CG and 

GMRES methods.  Solver naming convention is based on the type of linear solver being used 

such as Newton-CG or Newton-GMRES.  A more general naming convention would be Newton-

Krylov, which encompasses all Newton-based nonlinear solvers using Krylov subspace methods.  

Such naming convention can also be applied to tensor methods as well.  According to GMRES 

developers Saad and Schultz [27], “One of the most effective iterative methods for solving large 

sparse symmetric positive definite linear systems of equations is a combination of the conjugate 

gradient method with some preconditioning technique.”  Preconditioning is used to reduce the 

condition number of a matrix to improve performance of iterations thereby helping to minimize 

the number of computations required for convergence.  A detailed overview of preconditioning 

techniques and Krylov subspace methods can be found in a text by Saad [28]. 

 Arc-length methods supplement the Newton-Raphson method with an additional 

constraint equation to define a path for iterations.  The primary strength of arc-length methods is 

their ability to solve past limit points when traversing a solution curve or equilibrium path that 

changes slope or direction.  Several variations of the arc-length method exist and naming 

convention is typically based on the type of constraint being used.  Early development of the 

method is credited to Riks [29] and Wempner [30] where iterations are constrained to a normal 

plane.  Crisfield [31] later proposed use of a circular path and Ramm [32] used a linearized 

version of Crisfield’s constraint for an updated normal plane that provided for a “faceted” path 
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that mimics a curve.  In later publications by Crisfield [33,34], the term cylindrical was used to 

define a path where one of the terms in the circular or spherical constraint was set to zero.  This 

implementation was, in fact, the method used in his original publication [31] which is why the 

phrase “proposed circular” or “proposed spherical” path is often used.  An elliptical path is 

presented in course notes by Felippa [35] where scalar coefficients are used as multipliers for 

terms in the spherical constraint equation.  By setting these terms to one, the spherical path is 

recovered, whereas other values form an elliptical path.  The prefix “hyper” is also appended to 

naming convention to reinforce use for multi-degree-of-freedom systems versus single-degree-

of-freedom only.  Felippa refers to both global and local hyperelliptic control options for 

defining the iteration path depending on the frame of reference being used. 

Bathe and Dvorkin [36] provided for an additional constraint option by including an 

energy or work based equation in combination with a spherical constraint.  The possibility of 

combining the full Newton-Raphson, modified Newton-Raphson, quasi-Newton, and line search 

methods in combination with arc-length constraints was also discussed.  The solution scheme 

was acknowledged as being particularly effective near limit or collapse points with an overall 

objective of tracing the complete equilibrium path in an automated manner.  This concept is 

relevant to numerical path following or continuation methods in mathematics.  De Borst et al. [3] 

uses the phrase path following method as a similar descriptor for the arc-length method; 

however, connection to such theory in mathematics is not explicitly made.  Previous texts by 

Crisfield [33,34], on which the later text by de Borst et al. is based, cover arc-length methods in 

greater detail and make the connection between these methods and related continuation methods 

or techniques in mathematics.  This continuation terminology is used repeatedly in Volume 1 

[33] and later replaced by path following in Volume 2 [34]. 
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An overview of numerical path following or continuation methods presented from a 

mathematical perspective can be found in texts by Allgower and Georg [37,38].  Reference to 

works by authors who refined such procedures for FEA is included in the bibliography of the 

earlier publication, but specifics with regard to these references are not included in the text or 

later publications showing a general disconnect between the two vocations.  Terminology varies 

slightly from what is used for FEA as arc-length methods are referred to as predictor-corrector or 

pseudo arc-length continuation methods.  The term pseudo is best understood with respect to a 

single-degree-of-freedom system where a tangent line is used to approximate the length of an arc 

or curve.  The point at the end of the tangent line is called a predictor for the next point on the 

curve, and Newton-Raphson iterations are then used as correctors until an intersection with the 

curve or a solution is found.  The basic concept behind this principle is that a series of tangent 

lines or approximate arc-lengths serve as an ideal method for parameterization of a given curve.  

This parameterization is what enables tracking of the curve around limit or turning points where 

the Newton-Rapson method parameterized using only a fixed scalar for non-zero solutions would 

fail.  The magnitude of the arc-length parameter is scaled in practice according to Bathe [1] 

based on the history of iterations between solution steps or previously found points on the 

solution curve.  This magnitude could be large when the behavior of a solution curve is nearly 

linear and become small when behavior becomes nonlinear such as near a turning point.  

Crisfield [33] provides for a simple scaling equation using the ratio of desired to actual iterations 

required for convergence and refers to such an approach as required for a robust continuation 

method.  He also warns that despite one’s best attempt at automation, user intervention is often 

required and methods for restarting of the solver should be made available. 
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Felippa [35] summarizes the use of continuation or path following methods used in 

nonlinear structural mechanics or FEA as not just being a possible game but the only game.  He 

refers to the engineering flavor of continuation methods as being less difficult to implement as 

those presented in mathematics where the objective of finding the roots in a nonlinear system 

analysis is replaced by following the physics.  He comments on the lack of cross-fertilization 

between the math and engineering communities and notes a 1978 publication by H. B. Keller 

titled, “Global homotopies and Newton methods,” that claims invention of the arc-length method 

years after Riks and Wempner first published it.  Felippa opts for the predictor-corrector 

terminology for explaining the various forms of arc-length methods but notes that such 

terminology is far from standardized.  Final comments in his course notes state that the last 

major advancement in arc-length methods was made by Riks and Wempner in the late 1960’s 

and early 1970’s and was later improved by Crisfield in the 1980’s.  Another significant 

improvement mentioned by de Borst et al. [3] is the partitioned versus direct solution procedure 

used to maintain symmetry and the banded nature of the Jacobian or tangent stiffness matrix.  

This procedure was used by Crisfield [31] and Ramm [32] and breaks the vector of unknown 

variables in the nonlinear system into two components for purpose of solving equations in an 

efficient manner. 

Conn et al. [14] discuss the use of trust-region methods for solving systems of nonlinear 

equations although these methods are more commonly used for purpose of numerical 

optimization.  Systems of nonlinear equations are used to construct what is called an objective 

function with a goal of finding a solution that minimizes this function.  A model that 

approximates the objective function is formed and iterations are performed to continually update 

candidate solutions until convergence is achieved.  Unlike the Newton-Raphson method, which 
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uses a linear model, a quadratic model that incorporates use of the Hessian or matrix of second-

order partial derivatives from a Taylor series expansion is used.  This fidelity increment adds a 

degree of robustness to the solver as convergence at limit or critical points that exhibit zero slope 

or a singular Jacobian can be achieved.  However, warning is given as the solver may converge 

to a minimum and not a root or zero for a solution to the nonlinear equations.  Nocedal and 

Wright [7] also include use of trust-region methods as a solver option for nonlinear equations.  

The phrase objective function is replaced by merit function to better differentiate between 

solvers used for optimization versus nonlinear equations.  Merit functions are defined as scalar 

functions that indicate whether progress is being made towards finding a root.  The most widely 

used merit function was identified as using the sum of squares of the nonlinear equations during 

iterations.  Roots can be distinguished from minimums as they equate equations to all zeros 

versus some positive value.  The most widely used quadratic model for solving nonlinear 

equations was identified as one that uses an approximate Hessian obtained by multiplying the 

transpose of the Jacobian by itself.  Computation of the exact Hessian would be quite expensive 

and approximating it as a function of the Jacobian helps to reduce this cost.  Crisfield [33] 

includes commentary on limit or critical points for continuation methods using arc-length 

solvers.  He states that from an engineering viewpoint, the precise computation of limit points 

does not seem to be of practical importance.  Although arc-length solvers can fail at limit points 

due to singularity of the Jacobian, he states that this was not found to be a significant problem as 

one appears never to arrive precisely at a limit point.  There is always the option to reduce the 

arc-length parameter and restart the solver as well.  Authors of FEA and MBD texts [1-6] did not 

include use of trust-region methods for solving nonlinear equations, likely due to their higher 
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computational expense as compared to Newton-Raphson methods and low probability that a root 

would also correspond to a limit point in an equilibrium solution. 

 

2.2 PARALLEL COMPUTING 

 

 Barney [39], who authored an online tutorial in parallel computing for the Lawrence 

Livermore National Laboratory, defines parallel computing in the simplest sense as the 

simultaneous use of multiple computer resources to solve a computational problem.  This process 

differs from more traditional serial computing where a problem is broken into a discrete series of 

instructions that are processed in order one at a time.  Primary reasons cited for use of parallel 

computing are to save time, money or both, to solve larger, more complex problems, provide 

concurrency, to take advantage of non-local resources, and to make better use of underlying 

parallel hardware.  Barney states that virtually all stand-alone computers today are parallel from 

a hardware perspective and that trends over the past 20+ years in network speed, distributed 

systems, and multi-processor computer architectures show that parallelism is the future of 

computing.  Several programming models are covered in the tutorial where a few of the popular 

standards include OpenMP [40] where several central processor units (CPUs) share memory, 

message passing interface (MPI) [41] where memory is distributed among multiple CPUs, and 

Single Program Multiple Data (SPMD) [42] which can be a hybrid combination of both.  He also 

notes an increasingly popular hybrid model that incorporates graphics processor units (GPUs) in 

addition to CPUs for parallel processing. 

 The primary intent of parallel programing cited by Barney is to decrease execution wall 

clock time.  One of the simplest and most widely used metrics for parallel performance is 
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observed speedup being defined as serial wall clock time divided by parallel wall clock time.  

Caution is given regarding performance of short running parallel programs as there can be a 

decrease in performance due to issues such as task creation and communications overhead.  A 

noted inhibitor to parallelism is input-output timing for the transfer of data.  In regards to CPU 

and available memory, a table is included in the tutorial showing a decrease in speed for various 

memory types with respect to the CPU register with a baseline communication time of one 

nanosecond.  Cache memory is shown to be 10X slower, main memory 100X slower, and 

magnetic disk memory 100,000,000X slower showing dramatic reduction in speed for memory 

locations further away from the cache.  An older yet still relevant text on parallel computing by 

Grama et al. [43] makes note of impressive gains in CPU performance over a given decade while 

the ability of computer memory to feed data to processors has not kept up with their execution 

rate.  This timing gap between processor and memory has led to a significant performance 

bottleneck diluting overall parallel performance. 

 Matloff [44], a University of California at Davis professor, maintains an open-source text 

available online for parallel programming and lists several issues that can effect or inhibit 

performance.  He identifies the most central performance issue as being load balancing where the 

objective is to keep all processors as busy as much as possible and that communication 

considerations largely drive this issue.  Also noted is that the phrase “embarrassingly parallel” 

has evolved over recent years from referring to parallel code in a simple or easy to implement 

sense to one of maintaining low communications overhead.  He states that most users find their 

code often becomes slower on their first attempt to parallelize.  The reason being lack of 

understanding how hardware works, at least at a high level. 
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2.3 COMMERCIAL SOFTWARE 

 

 Commercial finite element codes such as Abaqus [9], ANSYS [10], and MSC Nastran 

[11] all use some variant of a Newton-Raphson [1-3] type solver for solving systems of nonlinear 

equations.  Nastran has several variations of arc-length solvers referred to as the Riks method 

[45,46] where iterations are constrained to a normal path, a modified Riks method [32] for an 

updated normal path, and Crisfield’s method [31] for a circular path.  Abaqus offers a modified 

Riks method [31,32,47] and ANSYS offers Crisfield’s method [31].  Arc-length solvers are 

specifically used for post-buckling type analysis of structures in these finite element codes.  

Quasi-Newton or BFGS [16-19] updates for the Jacobian or tangent stiffness matrix are available 

as an option in Nastran and Abaqus where ANSYS refers to use of a secant matrix implying 

some other variation.  Line searches [7] are also available in these codes where use of such a 

method is included by default in Abaqus when using BFGS updates.  Iterative solvers are also 

available as part of an inexact-Newton solver where Nastran and ANSYS use a preconditioned 

conjugate gradient method [26] and Abaqus uses a more generic preconditioned Krylov [28] 

solver.   

 Multi-body-dynamics codes MSC ADAMS [12] and RecurDyn [13] both use Newton-

Raphson as an initial method to search for static equilibrium.  RecurDyn augments the solver 

with a trust region method [14] in the event singularity with the Jacobian is encountered and 

incorporates a line search procedure as well.  ADAMS [12], on the other hand, offers a suite of 

static solver options in addition to Newton-Raphson including tensor-Krylov [24] and several 

optimization based solvers, one of which includes a line search strategy.  These choices are some 

of the more robust nonlinear solver options found in commercial software where attempts to find 
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equilibrium can be made using an entire suite of solvers.  No methods based on path following 

were found and solvers will generally provide point solutions in closest proximity to as modeled 

configurations when possible.  Technical computing software MATLAB only offers 

optimization algorithms imbedded in its fsolve [15] routine for solving general systems of 

nonlinear equations.  No variations of Newton-Raphson, tensor, or arc-length were found leaving 

this up to users for programming and implementation.   

 All of the referenced commercial software offers parallel operations with shared memory 

parallelism being the most common.  Abaqus, ANSYS, and MALAB extend parallel operations 

to include use of GPUs while Nastran, ADAMS, and RecurDyn do not appear to have 

implemented this latest form of parallel computing technology.  Typical subroutines that have 

been parallelized in FEA and MBD codes include matrix computation and factorization, linear 

solvers, and eigenvalue solvers.  MATLAB offers an even larger variety of shared memory 

parallel operations [48-50] that are embedded in subroutines and occur by default without user 

intervention.  This implementation may be referred to as implicit parallelism [48] and such 

operations are minimally referenced in MATLAB’s user documentation [15].  This default can 

significantly add to the challenge of achieving speedup for explicit parallel code on shared 

memory computers where underlying parallel operations in serial versions of code are already in 

place. 
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CHAPTER 3 

 

SOLVING GENERAL SYSTEMS OF EQUATIONS 

 

 Solving systems of nonlinear equations can be challenging and analysts are often required 

to provide an initial guess of the solution as a starting point for use in an iterative solver.  Insight 

into approximate solutions leading to a good initial guess can usually be obtained if equations are 

representative of a physical system.  However, this process may not be achievable for complex 

systems or when the analyst lacks familiarity or experience with the system.  In this case, 

convergence may not be achieved if the initial guess is not close to the solution.  A general 

nonlinear solver suite based on the arc-length method with these circumstances in mind was 

developed for the purpose of numerical experimentation and was found to be a useful alternative 

to the fsolve function inherent to the MATLAB software [51].  Due to the additional unknown 

variable and supplemental constraint equation used by the arc-length method, curves 

representing solutions to parameterized equation sets were found by embedding the solver in a 

loop.  Restarts in the analysis were minimized as the arc-length method is capable of solving 

beyond local maxima or minima on smooth curves.  Several examples are provided 

demonstrating the unique capabilities of arc-length solvers. 

 

3.1 INTRODUCTION 

 

 Arc-length methods have successfully been used as a means for solving problems in 

structural analysis that involve tracking sudden changes in equilibrium paths or force-
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displacement curves [30-32,45].  The collapse of a structure from an applied load for example 

may not necessarily involve total system failure but a sudden geometric change where the 

structure has “snapped” to a new configuration.  Analysts may be interested in tracking the 

equilibrium path through the snapping event and want to determine how the structure behaves if 

continued loading is applied.  Arc-length methods were developed for this purpose and are 

capable of tracking solutions beyond limit points such as points 2 or 3 on the sample curve in 

Fig. 1. 

Starting from point 1 on Fig. 1, Newton-Raphson solvers are able to find points on the 

path up to limit point 2.  Point 4, if found, would be the next available value of displacement at 

this specified force value leading to a break or discontinuity in path.  The procedure could be 

restarted near point 4 using an estimated larger value for displacement in an attempt to find a 

new point on the path.  Once a new starting point is found, additional points on the missing 

portion of the path could be found by reducing force until the lower limit at point 3 is 

encountered.  Additional restarts in the analysis could be performed including use of MATLAB’s 

fsolve routine [15] to help fill in the remaining section of the path between points 2 and 3 for 

specified levels of force. 

Although such an approach could be used, it would be less robust as compared to a solver 

that could track the equilibrium path beyond limit points in a continuous manner.  There is also 

the possibility of gathering an insufficient number of points needed to construct the path or 

missing sections containing abrupt turns.  Arc-length methods, on the other hand, treat force as 

an unknown parameterizing variable extending the search for new points to the two-dimensional 

space represented by Fig. 1.  When force is maintained as a specified variable in other methods, 

the search for new points is limited to a horizontal line crossing the vertical axis at the specified 
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value.  When force is treated as a simultaneous unknown parameter, search procedures become 

multi-dimensional, making the arc-length method better suited for finding the different nonlinear 

solutions.  Although Fig. 1 is representative of a single-degree-of-freedom system, the same 

holds true for multi-degree-of-freedom systems where any component of the displacement vector 

can be plotted against a factor used to scale force.  Example problems studied in this chapter 

demonstrate robustness of arc-length methods through minimizing or avoiding the need for 

restarts and added capability to search for and successfully find solutions where other solvers 

may fail.  Development of the solver suite provided a robust tool set for finding solutions to 

nonlinear systems of equations and visualizing results. 

 

 

Figure 1.  Equilibrium path exhibiting limit points and snap-through 

 

3.2 SOLVER THEORY AND BACKGROUND 

 

The objective in solving nonlinear systems involves finding 𝒖 such that  𝒇(𝒖) = 𝟎 (1) 
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In structural analysis, the problem is formulated as 𝒇(𝒖) −  𝜆𝑭 =  𝟎 (2) 

where the objective is to find a balance between internal system forces 𝒇(𝒖) and a scaled value 

of applied force 𝑭.  Use of this format allows for generation of curves such as Fig. 1 where 

displacement can be found at various levels of force.  This equation format was used to 

implement the arc-length solver for general sets of nonlinear equations where 𝑭 is taken as unity 

or a column vector of ones denoted as 𝟏.  The refined objective is to find 𝒖 such that 𝒇(𝒖)  = 𝜆𝟏 where 𝜆 can be any constant that is common to the set of equations.  By making λ an 

unknown parameter, a higher likelihood of finding a solution from an initial guess exists as 𝜆 can 

be any scalar value including zero.  Once a solution has been found, it can be used as an initial 

guess for nearby values of 𝜆 making the process less random and more likely to find new 

solutions.  The process can therefore be continued to construct curves representing all values of 𝜆 

common to the equation set with regards to individual components of 𝒖. 

At the core of many solver methods is the Newton-Raphson scheme.  A first-order Taylor 

series is applied to the system of nonlinear equations 𝒇(𝒖) which “linearizes” the system at 

specific values of 𝒖 resulting in 𝒇(𝒖) + 𝑲∆𝒖 − 𝜆𝑭 = 𝟎 (3) 

Matrix 𝑲 is typically referred to as the Jacobian or tangent stiffness as it represents a tangent line 

to the equilibrium path at 𝒖.  The resulting set of equations may now be used as a local linear 

model to predict new values of 𝒖 for a fixed value of 𝜆.  A measure of error or residual in the 

nonlinear equations at the predicted value of 𝒖 is used to correct 𝒖 and update the linear model 

for the next step.  The process is repeated through iterations 𝑖 until a specified tolerance on error 

is achieved or an iteration limit has been met to avoid the possibility of an infinite loop if the 
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solver were to diverge.  A graphical representation of the procedure is shown in Fig. 2.  The 

iteration path for this case follows a series of horizontal points starting with initial predicted 

values for 𝒖0 and 𝑲0 and corresponding corrected values 𝒖𝑖 and 𝑲𝑖 along the horizontal line 𝜆𝑭 

until converging with the equilibrium path. 

 

Figure 2.  Newton-Raphson method for single-degree-of-freedom 

 

Variations of the Newton-Raphson method exist to save on cost associated with 

computation and inversion of the tangent stiffness matrix when solving for 𝛥𝒖.  These variations 

include a modified Newton-Raphson method where 𝑲 is held constant during iterations and a 

quasi-Newton method where a secant approximation for 𝑲 is obtained by passing a line through 

two previously found points (𝒖𝑖, 𝒇(𝒖𝑖)) on the equilibrium path.  One of the most popular quasi-

Newton methods is known as the Broyden-Fletcher-Goldfarb-Shanno or BFGS method [16-19].  

Tensor methods [21] can also be considered a variation of the Newton-Raphson method as they 
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include second-order information from the Taylor series approximation of 𝒇(𝒖).  Instead of 

using a linear approximation of the nonlinear model, a quadratic approximation is used for an 

improved local model at points 𝒖𝑖.  Tensor methods will generally require fewer iterations to 

reach a solution as compared to Newton-Raphson methods due to the improved model.  This 

increased convergence rate, however, comes at a cost due to added computation of the quadratic 

term.  One example of a tensor solver implemented in commercial software can be found in the 

multi-body-dynamics analysis package MSC ADAMS [12]. 

The arc-length method differs from the Newton-Raphson method by incorporating to the 

procedure an additional constraint equation for the iteration path that allows 𝜆 to be treated as 

unknown.  Graphical representation of two common variations of the constraint are shown in 

Fig. 3.  A user specified arc-length 𝐿 is provided, which controls the starting point of the iteration 

path used to search for a new point at the intersection with the equilibrium path.  Early 

developments by Riks [45] and Wempner [30] were later updated by Ramm [32] to maintain 

symmetry of governing equations for finite element analysis.  A normal path or hyperplane 

relative to arc-length 𝐿 is used to search for new points on the equilibrium path for this case.  

Crisfield [31] made a further refinement and proposed using a circular or hyperspherical iteration 

path.  The circular iteration path reduces 𝜆 by a larger amount as compared to the normal 

iteration path and would more likely intersect the equilibrium path near limit points for a given 

arc-length 𝐿.  A detailed description of arc-length solvers and how they are implemented for 

nonlinear finite element analysis can be found in the MSC Nastran solution 400 user guide [11].  

An overview of nonlinear solvers for finite element methods in general can be found in texts by 

Cook [2] and Bathe [1]. 
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Figure 3.  Arc-length method for single-degree-of-freedom 

 

Solvers implemented with MATLAB’s fsolve are based on trust-region methods used for 

numerical optimization where a minimization procedure is used to find roots of Eq. (1).  Trust-

region solvers are more robust than Newton-Raphson based solvers as they are able to handle 

cases where 𝑲 is singular.  Singularity becomes an issue near limit points as shown on Fig. 1 due 

to the zero or near zero slope condition of 𝑲.  Singularity of 𝑲 will cause Newton-Raphson 

methods to fail or diverge from finding a solution due to the requirement of matrix inversion for 

finding updated values of 𝒖𝑖.  Further details on trust-region methods can be found in reference 

[14].  Although trust-region methods are more robust, they still do not have the capability of 

including 𝜆 as unknown due to the lack of a constraint equation for this variable in the algorithm.  

Similar to Newton-Raphson methods, a restart in analysis would be required for equilibrium path 

continuation when traversing limit points. 
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3.3 SOLVER SUITE DEVELOPMENT AND IMPLEMENTATION 

 

Several solver variations were implemented using MATLAB for the purpose of 

numerical experiments involving systems of nonlinear equations.  These solvers include Newton-

Raphson, tensor, BFGS, and arc-length methods on a normal plane and sphere.  Equation sets are 

defined using stand-alone functions or subroutines that are called by the solver.  A main program 

or script file is used to run the solver and specify results formatting.  A flowchart representation 

of the process is shown in Fig. 4.  Names of the corresponding MATLAB files or m-files are 

identified on the chart, and some of these m-files are provided in the Appendices.  The function 

used to define the system of nonlinear equations has the option for explicit definition of the 

Jacobian matrix.  This definition was easy to implement for the small-scale demonstration 

problems used in this chapter but may not be practical if the system is large.  An additional 

function is included to compute the Jacobian matrix numerically using a perturbation technique. 

 

Figure 4.  Program flowchart 
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3.4 DEMONSTRATION PROBLEMS 

 

Two, three, and eleven degree-of-freedom (DOF) sample problems were chosen to 

demonstrate the arc-length solver capability and identify curves representing solutions to the 

equation sets.  Eq. (4) consists of the two DOF system with an objective of characterizing the 

family of equilibrium pairs (𝑢1, 𝑢2) parameterized by 𝜆.  Overlaid surface plots of 𝑓1 and 𝑓2 are 

shown in Fig. 5.  For the case 𝜆 = 0, equilibrium solutions correspond to any intersections of the 

two surfaces that simultaneously occur at the level 𝑓1 = 𝑓2 = 0 in Fig. 5.  No solutions exist for 𝜆 = 0.  This conclusion is easily determined by finding the single polynomial equation for 𝑢1 

after eliminating 𝑢2, by numerical factoring, and finally by noting all roots are complex numbers.  

For the case 𝜆 ≠ 0, equilibrium solutions correspond to the intersections of the two surfaces in 

Fig. 5, and the corresponding level 𝑓1 = 𝑓2 ≠ 0 determines the specific value of 𝜆.  Therefore, 

the vertical axis in Fig. 5 also denotes the value of 𝜆 for the intersection curve.  A continuous 

family of solutions exists for −1.0522 ≤ 𝑢1 ≤ +1.0522, −0.2968 ≤ 𝑢2 ≤ +1.2968, and +0.5000 ≤ 𝜆 ≤ +2.5497.  These results are easily determined by finding the quadratic equation 

for 𝑢2 in terms of 𝑢1 after enforcing 𝑓1 = 𝑓2 and by finding the range for 𝑢1 where only real 

roots exist.  Independent variables are plotted on the horizontal plane and function values are on 

the vertical axis.  The solution is represented by the “shoe-shaped” curve representing the 

intersection of the two surfaces in Fig. 5. 𝒇(𝒖) − 𝜆𝟏 = 𝟎 (4) 

where 

𝒇(𝒖) = {𝑓1(𝒖)𝑓2(𝒖)} = {𝑢16 + 𝑢22 + 0.5𝑢12 + 𝑢2 + 0.5} 
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The previous results are now used as a test case to validate the arc-length method 

algorithm and nonlinear solver suite code.  Newton methods can be used initially and then 

switched to arc-length methods when 𝜆 reaches a local maximum or minimum on the curve.  

Alternately, arc-length methods can be used for the entire procedure.  Specification of the arc-

length parameter 𝐿 will control spacing between points on the curve where specification of an 

incremental change in 𝜆 will control spacing between points for Newton methods.  Several points 

consisting of combinations of ones and zeroes are easily identified by inspection of Eq. (4) and 

are used as starting locations for solvers that trace the equilibrium path.  This accurate 

initialization will not necessarily be the case for more complex systems meaning an initial guess 

in the literal sense will be required.  Although guessed points (𝒖0, 𝜆0) may not lie on the 

equilibrium curve, 𝒇(𝒖0) and 𝑲0 would still be output to initialize the solver procedure.  This 

procedure can be represented graphically where point ① on Figs. 2 and 3 no longer lies on the 

equilibrium curve and slope 𝑲0 is based on the fictitious point.  An iteration path will still be 

established and the process will likely still converge to a point on the equilibrium path.  The arc-

length method using a circular iteration path may produce complex roots for initial converged 

values (𝒖1, 𝜆1) where this is typically not the case for known or previously computed 

initialization points.  The appearance of complex roots is due to a quadratic equation used to 

enforce the circular constraint and the fact that guessed values will likely not fall on the 

equilibrium path where real number solutions exist.  Through trial and error, it was found that 

taking the real component of the complex root for a subsequent guessed value provided 

satisfactory results for cases studied.  Complex roots are not an issue for the other solvers unless 

they are inherited products of system 𝒇(𝒖).  In the event a complex solution is produced, it is 

rejected and new guesses are provided until a real solution is found. 
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When using the arc-length method with nearly arbitrary initialization, the equilibrium 

path or intersection curve in Fig. 5 is generated, exactly matching the known solution to a 

specified tolerance.  Once a point was identified on the equilibrium path, both arc-length variants 

readily identified new points and followed the equilibrium path past limit points avoiding the 

need for restarts.  Although arc-length methods can fail due to singularity issues similar to 

Newton methods, the procedure typically skips over and does not directly land on a limit point.  

If it does, an automatic reduction or increase in the specified arc-length could be made to deal 

with trouble locations.  Arc-length methods were also able to find solutions for initial guess 

values of 𝜆 outside the solution range, such as 𝜆 = 0, since the method inherently varies 𝜆.  

When 𝜆 = 0 is strictly enforced, surfaces intersect above the zero-plane and there is no solution 

to the equation set.  Newton methods are limited to searching planes normal to the 𝜆 axis 

resulting in surface intersections at specified levels.  When 𝜆 = 0 was specified as an initial 

guess for Newton methods, no solution was found as the algorithm did not converge.  Attempts 

were also made using fsolve for the 𝜆 equal to zero initial guess and convergence could not be 

achieved. 

 

Figure 5.  Intersecting surfaces (2 DOF) 
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A more complex three DOF system given in Eq. (5) was tested and results for selected 

variable 𝑢1 are shown in Fig. 6.  Solution accuracy was confirmed by back substituting into the 

nonlinear equation set and assessing the residuals.  Curves generated for systems of three DOF 

and greater represent intersections of hypersurfaces in hyperspace and are best viewed 

graphically by plotting any of the selected degrees-of-freedom versus 𝜆.  Fig. 6 shows the 

sectional view of 𝜆 versus 𝑢1.  Inspection of the equations was required to establish allowable 

ranges for variables to avoid complex roots occurring from initial guesses needed to start the 

solvers.  This treatment is due to square roots contained in Eq. (5) where it is seen that 𝑢3 must 

be zero or a positive value and 𝑢2 must be zero or a negative value.  The solution curve was 

found not to close in this case, and the curves become asymptotic as 𝜆 continues to increase.  If 

the objective was to find solutions for 𝜆 = 0, two zero-crossings can be identified.  Monitoring 

for a sign change in 𝜆 was incorporated into the root extraction procedure to trigger the Newton-

Raphson method and provide solutions precisely at 𝜆 = 0 where solutions are (𝑢1 = 2, 𝑢2 =−1, 𝑢3 = 4) and (𝑢1 = 0.6240, 𝑢2 = −1.7880, 𝑢3 = 5.9308) for Eq. (5).  Due to 𝜆 being 

unknown in the arc-length method, zero-crossings will occur between positive and negative 

values of 𝜆 on the solution curve, and the Newton-Raphson method simply provides a small 

convenient adjustment to achieve the precisely desired condition. 𝒇(𝒖) − 𝜆𝟏 = 𝟎 (5) 

where 

𝒇(𝒖) = { 𝑢31/2 + 𝑢12𝑢23𝑢3 + 𝑢3−1 + 4𝑢2 + 17.75(−𝑢3𝑢2)1/2 + 𝑢33𝑢1 − 𝑢2−2 + 3𝑢1 − 135𝑢1𝑢2𝑢3 + 𝑢22𝑢3 + 𝑢12𝑢3 − 3𝑢1𝑢2 − 18 } 
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Similar to Newton-methods, the fsolve algorithm was found to fail for initial guesses with 𝜆 values below the minimum range of -5 on Fig. 6.  One of the biggest challenges for all solvers, 

including fsolve, was the possibility of producing complex values of 𝒖.  The fsolve algorithm 

appeared to be the most robust for not producing complex values from poor initial guesses but 

still lacked the capability to track the solution with relatively even spacing of points as compared 

to the arc-length method.  In the near horizontal portion of the curve on Fig. 6 for example, a 

very fine increment in 𝜆 would be required when traversing upward.  Solvers without arc-length 

control in this case can overshoot and lose track of the solution. 

 

Figure 6.  Solutions for 𝜆 versus 𝑢1 (3 DOF) 

 

An eleven DOF system given in Eq. (6) with results shown for a selected variable in Fig. 

7 demonstrates the possibility of multiple complex shaped curves for solutions in hyperspace.  

Note the multi-values of 𝑢2 for a single 𝜆 value on the curves.  The larger closed curve is 

represented by a series of blue dots and the smaller by a series of small red circles to indicate 

found points.  Equations are representative of the collapsing arch mechanical system found in 
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Chapter 4 and the initial value of 𝒖 was based the known initial state or configuration of the 

system.  Only a guessed value of 𝜆 would be required in this case.  The fsolve algorithm, which 

included three variants using default settings, could not find a solution when 𝜆 = 0 was used as 

an initial guess.  The algorithm could, however, find solutions for other values within the range 

shown on Fig. 7.  Newton-based solvers were able to find a solution for the 𝜆 = 0 initial guess 

but jumped between curves for a 𝜆 = 1 initial guess.  The arc-length method was able to trace 

both curves in this instance and a restart was only required for traversing the pointed section of 

the curve on the upper right-hand corner of Fig. 7.  The curve was completed by changing the 

arc-length parameter from a positive to negative value to trace the curve in both clockwise and 

counter-clockwise directions from an initial starting point.  The small curve could be traced in a 

single sweep. 𝒇(𝒖) − 𝜆𝟏 = 𝟎 (6) 

where 

𝒇(𝒖) =

{  
   
  
   
  𝑢7 − 𝑢9𝑢8 − 𝑢10 +𝑚𝑔𝑢9 − 𝑘(𝑢3 + 𝐿𝑐𝑜𝑠(𝑢6) − 𝐸)𝑢10 + 𝑢11 +𝑚𝑔𝐿𝑠𝑖𝑛(𝑢5)(𝑢7 + 𝑢9) − 𝐿𝑐𝑜𝑠(𝑢5)(𝑢8 + 𝑢10)𝐿(𝑢9𝑠𝑖𝑛(𝑢6) − 𝑢10𝑐𝑜𝑠(𝑢6) + 𝑢11𝑐𝑜𝑠(𝑢6))…+ 𝑘𝐿𝑠𝑖𝑛(𝑢6)(𝑢3 + 𝐿𝑐𝑜𝑠(𝑢6 − 𝐸))𝑢1 − 𝐴1 − 𝐿𝑐𝑜𝑠(𝑢5)𝑢2 − 𝐴2 − 𝐿𝑠𝑖𝑛(𝑢5)𝑢3 − 𝑢1 − 𝐿(𝑐𝑜𝑠(𝑢6) + 𝑐𝑜𝑠(𝑢5))𝑢4 − 𝑢2 − 𝐿(𝑠𝑖𝑛(𝑢6) + 𝑠𝑖𝑛(𝑢5))𝑢4 + 𝐿𝑠𝑖𝑛(𝑢6) }  

   
  
   
  

 

where 𝐿 = 5, 𝐴1 = 𝐴2 = 0, 𝑘 = −0.1,𝑚𝑔 = 1, 𝐸 = 20cos (𝜋4)  
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Figure 7.  Solutions for 𝜆 versus 𝑢2 (11 DOF) 

 

3.5 CONCLUSIONS 

 

Arc-length methods were found to be useful tools for solving systems of nonlinear 

equations and generating curves representing the many possible solutions for a given system.  

Newton-based solvers and MATLAB’s fsolve would also be capable of generating similar curves 

but in a less robust manner.  Arc-length solvers were found to minimize the need for restarts by 

continuing to track points on curves past and around limit points for smooth portions.  Newton-

based methods, on the other hand, would fail near limit points on curves and fsolve was also 

found to fail for cases studied if 𝜆 was outside the solution range.  By readily tracing solution 

curves, arc-length methods helped identify variable bounds and zero-crossings of curves for the 

special solution to 𝒇(𝒖) = 𝟎.  Without identifying solution curves or only discrete portions, 

critical or specific points could be missed.  The fsolve algorithm appears more robust for finding 
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point solutions from poor initial guesses if 𝜆 is within the solution range as was the case for the 

three DOF system.  The arc-length method was able to find solutions for guessed values of 𝜆 that 

were outside the solution range and worked well for the eleven DOF system where 𝒖 was based 

on an initial physical state of the mechanical system.  Without use of the arc-length method, 

solution curves would be difficult to trace due to likelihood of multiple restarts and the 

requirement for new guesses to search for new points on curves. 
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CHAPTER 4 

 

EQUILIBRIUM FOR MULTI-BODY-DYNAMIC SYSTEMS 

 

 Determining states of static equilibrium for MBD systems can be challenging and may 

result in convergence failure for nonlinear static solvers.  Analysts are often faced with 

uncertainty in regards to the quantity of candidate equilibrium states or whether a state of 

minimum potential energy was found.  In the event of static solver failure or uncertainty with 

regards to a candidate solution, equilibrium could be obtained through a dynamic simulation 

which may require the addition of artificial damping.  This method, however, can have 

significant computational expense as compared to static solution procedures.  Using simple 

MBD systems representing a pendulum and two variations of a spring supported arch, arc-length 

solvers were found suitable for identifying equilibrium states through a robust production of 

static solution curves thereby avoiding dynamic simulation.  Using these examples, a procedure 

for finding the correct equilibrium state for general systems is proposed. 

 

4.1 INTRODUCTION 

 

This chapter is an expansion of work documented in Ref. [51] and Chapter 3 where arc-

length solvers [30,31,45] were applied to general systems of nonlinear equations in search of the 

many possible solutions for a parameterized system versus the special case of the zero parameter 

solutions.  Arc-length solvers have the unique capability of following solution curves past 

turning or limit points and are less likely to fail or require restart as compared to other 
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parameterized solvers.  Graphical representation of the total solution set was plotted using 

sectional views of the multi-dimensional hyperspace where any of the independent state 

variables could be plotted against the dependent variable denoted as 𝜆.  In the arc-length method, 𝜆 is treated as an unknown and computed from an additional constraint equation.  Plotting the 

solution in this manner revealed a path or curve representing the intersection of hypersurfaces 

within the specified sectional view.  Sectional views of systems studied demonstrated the 

possibility of closed curves, curves that self-intersect, multiple curves, and open curves that 

reach an asymptotic limit implying an intersection of surfaces that become parallel.  Possibility 

of multiple roots or solutions was identified as curves tended to cross the 𝜆 equal to zero axis at 

more than just one location.  Zero-crossings of the path were of particular interest for systems 

studied in this chapter as they represent candidate equilibrium states as equations were based on 

physical systems.  Mechanical systems including a pendulum and variations of a spring 

supported v-shaped arch were used to develop theory and a proposed method for selecting 

equilibrium.  A variety of selection criteria were used to identify equilibrium including potential 

energy, eigenvalues, and solution curves generated using an arc-length solver.   

Equations of motion for the mechanical systems used in this study were derived using 

Lagrange’s method [52].  Reducing the derived differential equations to first-order and coupling 

them with the system’s algebraic constraint equations resulted in sets of differential and 

algebraic equations that could be solved numerically using various methods.  This procedure can 

be automated and is central to commercial multi-body-dynamics software MSC ADAMS.  A 

detailed explanation on how this procedure is implemented including derivation of equations for 

the pendulum used as the starting example can be found in Ref. [53].  Modeling of mechanical or 

other dynamic systems typically results in initial configurations or states that are not in 
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equilibrium.  In the spring supported arch under the influence of gravity for example, the spring 

may not be exactly extended or compressed from its free length to balance the applied load.  The 

search for equilibrium in this case can be done either dynamically with added damping for a 

decayed response towards the static configuration, or statically where time dependent terms in 

the governing equations are set to zero and an attempt to solve the resulting system is performed.  

The dynamic approach has an obvious computational expense due to implementing a nonlinear 

solver at every time step versus the cheaper static approach where the solver is implemented only 

once.  The static solution, however, includes risk for converging to a rest-state that numerically 

satisfies equations but does not represent equilibrium.  As noted in Ref. [53], the static solution 

for a pendulum may align with the gravity vector and converge to an upward pointing vertical or 

unstable configuration versus the stable downward configuration.  

Finding equilibrium statically using arc-length solvers and previously mentioned 

selection criteria are the primary focus of this chapter.  Arc-length solvers are typically used for 

tracking nonlinear events such as post-buckling or snap-through in structures and have been 

successfully implemented in commercial finite element codes such as MSC Nastran [11] and 

Abaqus [9].  They may also be referred to as numerical path following [38] or continuation 

methods [37] where such terminology may be more familiar to mathematicians.  There appears 

to be little cross-fertilization between the mathematical and engineering communities as noted by 

Felippa [35] and use of arc-length solvers in general seems limited.  Current implementation in 

multi-body-dynamics codes, including MSC ADAMS [12], could not be found from literature 

review.  Based on previous work in Ref. [51], arc-length solvers will increase likelihood for 

finding a solution where other solvers may fail, and help identify the many candidate or 

numerically feasible equilibrium states using the generated solution curves.  Note that arc-length 
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solvers and proposed methods will require many static solutions for construction of curves; 

however, this can be viewed as a compromise between a one-time static approach that may 

converge to an improper solution or fail and a full dynamic simulation. 

Efficiency of arc-length or other Newton-Raphson based solvers is primarily a function 

of the computational cost associated with calculation and factorization of the tangent stiffness or 

Jacobian matrix and use of a modified Newton-Raphson method can be effective in reducing this 

cost [1].  Modified methods hold the Jacobian constant or only update it periodically during 

solver iterations or search for a solution.  While this tends to increase the number of solver 

iterations required for convergence, overall computational cost and wall time can be significantly 

less.  In addition to minimizing the computation and factorization of the Jacobian, known 

patterns, invariant terms, sparsity, and parallel operations can be taken advantage of as well.  A 

detailed study relevant to computation of the Jacobian for multi-body-dynamic systems can be 

found in Chapter 5. 

The structure of this chapter begins with a description of a parameterized Newton-

Raphson solver followed by two variations of arc-length solvers that modify Newton-Raphson 

with an additional constraint.  Governing equations for a pendulum and spring supported arch are 

presented along with solution curves obtained using an arc-length solver and the found candidate 

equilibrium states.  The paper ends with a proposed method for selecting equilibrium and 

conclusions. 
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4.2 THEORY AND METHODS FOR PARAMETERIZED NEWTON-RAPHSON 

 

A common approach for finding static equilibrium in multi-body-dynamic systems 

involves setting time dependent terms in governing DAEs to zero and solving the remaining 

nonlinear algebraic equations using some variant of a Newton-Raphson solver [53].  The general 

format for such systems may be written in compact form as in Eq. (1) where the objective is to 

find vector 𝒖 that makes all equations within vector 𝒇 equal to zero.  Searching for other than 

zero solutions as part of a path following or continuation method requires inclusion of an 

additional parameter such that Eq. (1) can be redefined as given in Eq. (2) where scalar 𝜆 can be 

any real number and 𝑭 is a reference vector set to all ones.  Solving of Eq. (2) requires 

linearization about a local point 𝒖𝑖 through a first-order Taylor series expansion resulting in 𝒇(𝒖) − 𝜆𝑭 ≈ 𝒇(𝒖𝑖) + (𝝏𝒇𝝏𝒖)𝑖 (𝒖 − 𝒖𝑖) − 𝜆𝑭 = 𝟎 (7) 

Unknown vector 𝒖 will be referred to as the state vector and contains information on position, 

velocity, and constraint forces for the mechanical systems being modeled.  Updating terms in Eq. 

(7), which includes the matrix of first-order partial derivatives for 𝒇 and the incremental change 

or difference between 𝒖 and 𝒖𝒊, results in 𝒇(𝒖𝑖) + 𝑲𝑖∆𝒖𝑖 − 𝜆𝑭 = 𝟎 (8) 

Eq. (8) may now be solved using a Newton-Raphson method where a value for 𝜆 needs to be 

specified.  A stepwise procedure for solving Eq. (8) is given in Subsection 4.2.1 with graphical 

representation shown in Fig. 2.  Note that results only for 𝜆 equal to zero are admissible solutions 

for equilibrium as other values of 𝜆 modify governing equations with a scalar offset for non-zero 

solutions to equations.  Static solution curves can be constructed through incremental variation of 𝜆 as part of a path following method in an attempt to identify additional equilibrium states.  
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Though plausible, such an approach would be difficult using Newton-Raphson due to failure at 

limit or turning points on solution curves which is better suited for arc-length solvers where 𝜆 is 

treated as an unknown and path following is more easily achieved. 

 

4.2.1 STEPWISE PROCEDURE FOR PARAMETERIZED NEWTON-RAPHSON 

 

1. Specify a value for 𝜆 and provide an estimate or initial guess for state 𝒖𝑖 at 𝜆𝑭.  Use 

iteration count 𝑖 = 0 to begin the process. 

2. Calculate 𝑲𝑖 or the matrix of first-order partial derivatives with respect to state variables 

in vector 𝒖𝑖 where 

 𝑲𝑖 = [  
 𝜕𝑓1𝜕𝑢1 ⋯ 𝜕𝑓1𝜕𝑢𝑁⋮ ⋱ ⋮𝜕𝑓𝑁𝜕𝑢1 ⋯ 𝜕𝑓𝑁𝜕𝑢𝑁]  

 
 

3. Calculate system vector 𝒇(𝒖𝑖). 
4. Determine the residual or difference between 𝜆𝑭 and 𝒇(𝒖𝑖) where 𝑹𝑖 = 𝜆𝑭 − 𝒇(𝒖𝑖). 
5. Calculate ∆𝒖𝑖, where ∆𝒖𝑖 = 𝑲𝑖−1𝑹𝑖. 
6. Check if ∆𝒖𝑖 is small with respect to 𝒖𝑖.  This check may be done by taking the ratio of 

vector norms or absolute values for single-degree-of-freedom systems and seeing if this is 

less than a user-specified error tolerance.  Is ‖∆𝒖𝑖‖/‖𝒖𝑖‖ less than the specified error 

tolerance? 

7. If yes, stop, the solution has been obtained; otherwise, update both the iteration count and 𝒖𝑖 and repeat the procedure starting with step 2.  The updated value of 𝒖𝑖 is obtained by 

adding ∆𝒖𝑖 to the current value of 𝒖𝑖 where 𝒖𝑖+1 = 𝒖𝑖 + ∆𝒖𝑖. 
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8. If a solution has been obtained and search for other nearby solutions is desired as part of 

a path following procedure, restart the procedure beginning with step 1.  Use the 

previously found solution as an initial guess and specify a new value for 𝜆 that represents 

a small change away from that solution. 

 

4.3 THEORY AND METHODS FOR TWO VARIATIONS OF ARC-LENGTH 

 

The arc-length method is similar to the Newton-Raphson method with the exception to 𝜆 

being unknown.  The variable  ∆𝜆𝑖 is introduced for use in incremental form and is defined as the 

difference between unknown and known values of 𝜆 at iterations 𝑖 + 1 and 𝑖 where ∆𝜆𝑖 = 𝜆𝑖+1 −𝜆𝑖.  Eq. (8) is now modified as 𝒇(𝒖𝑖) + 𝑲𝑖∆𝒖𝑖 − (∆𝜆𝑖 + 𝜆𝑖)𝑭 = 𝟎 (9) 

At equilibrium, both ∆𝜆𝑖 and ∆𝒖𝑖 become very small such that the difference between 𝜆𝑖𝑭 and 𝒇(𝒖𝑖) or residual 𝑹𝑖 is minimized.  Iterations are typically stopped when a user-specified error 

tolerance on ∆𝒖𝑖 has been achieved.  Solving of Eq. (9), however, requires an additional 

equation as there is now an additional unknown variable.  The additional equation constrains 

iterations to a defined path with two common variations being a normal path [30,45] or circular 

path [31].  The starting location for the iteration path is based on a user-specified arc-length 𝐿 

that controls the magnitude of the initial ∆𝒖𝑖 and ∆𝜆𝑖 terms.  The arc-length is made tangent to a 

known equilibrium point or alternately a guessed fictitious point using the tangent stiffness 

matrix 𝑲, which can have either positive or negative slope based on the matrix determinant.  

Once the initial point at the end of the arc-length has been found, the residual is checked and 

iterations are performed along the specified path until convergence or a limit on iterations is 



www.manaraa.com

44 
 

achieved.   Fig. 3 shows how the arc-length is used to provide an initial guess or starting point on 

the iteration path.  Both 𝜆 and 𝒖 are varied through the process which extends the search for new 

points on the equilibrium path to the normal or circular path as shown in Fig. 3 versus the 

horizontal path used by the Newton-Raphson method in Fig. 2.  This adjustment is what allows 

arc-length solvers to track equilibrium paths or solution curves for given systems that may 

suddenly change slope or direction in a more robust manner as compared to others solvers.  Due 

to 𝑭 being constant, it has been left off of the remaining figures for clarity.  Known or starting 

points correspond to an iteration count of zero or point (𝒖0, 𝜆0) on figures.  In the event the 

method fails to converge, the magnitude of the arc-length 𝐿 can be reduced to a smaller value 

and the process repeated.  This logic can be done by reducing the arc-length by a factor such as 

one half. 

Arc-length methods may also be referred to as predictor-corrector or pseudo arc-length 

continuation methods [37,38].  The term pseudo is best understood with respect to the single-

degree-of-freedom system shown in Fig. 3 where a tangent line 𝐿0 of slope 𝐾0 is used to 

approximate the length of the arc or curve between points ① and ③ or ① and ④ depending 

on the iteration path being used.  Point ② at the end of the tangent line can also be referred to as 

a predictor for points ③ or ④ on the curve.  Corresponding linear model iterations would then 

be performed as correctors along the iteration path until a converged solution or intersection with 

the equilibrium path is found.  The basic concept behind numerical path following or 

continuation using this approach is that a series of tangent lines or approximate arc-lengths serve 

as an ideal method for parameterization of a given curve. 
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4.3.1 ARC-LENGTH METHOD USING NORMAL ITERATION PATH 

 

Perhaps the most straightforward implementation of the arc-length method is to constrain 

iterations to a normal path.  This path may also be referred to as a plane or hyperplane to 

emphasize use for multi-degree-of-freedom systems.  Because the arc-length 𝐿 is specified and 

tangent stiffness 𝑲 can be calculated at known states, ∆𝒖0 and ∆𝜆0 can be calculated using 

length relations for a right triangle and Eq. (9).  Terms 𝒇(𝒖𝑖) and 𝜆𝑖𝑭 cancel for points lying on 

the equilibrium path resulting in the following set of equations. 𝑲𝑖∆𝒖𝑖 − ∆𝜆𝑖𝑭 = 𝟎 (10) 𝐿𝑖2 ≝ (∆𝜆𝑖)2 + (∆𝒖𝑖)𝑇∆𝒖𝑖 (11) 

Subscripts in these equations are for 𝑖 equal to zero as they are based on a known equilibrium 

point or initial configuration.  The two equations can be solved using a second coincident 

triangle where the length of one edge is specified.  Unknown variables are found based on 

equivalent length ratios as shown in Fig. 8 where numbered points correspond to those found on 

Fig. 3.  Eq. (11) is commonly used to define arc-length 𝐿, which is a “distance” in the 𝜆; 𝒖 space 

with inconsistent dimension since ∆𝒖𝑖 has possibly mixed dimensions of position; velocity; and 

force for mechanical applications while ∆𝜆𝑖 is dimensionless.  Alternately, a normalizing factor 

can be applied to the ∆𝒖𝑖 product in Eq. (11) to render this term dimensionless and thereby 

define 𝐿 in a consistent sense [1].  An update rule for arc-length values 𝐿𝑖 can be specified based 

on local curvature of the equilibrium path, or simply held constant.  Computations in the 

dissertation used fixed values of arc-length and automatically reduced this parameter by one-half 

in the event the solver failed to converge within a specified number of iterations. 
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Figure 8.  Calculation of ∆𝒖0 and ∆𝜆0 for single-degree-of-freedom system 

 

The subscript g in Fig. 8 is used to denote the given or specified value ∆𝜆𝑔, which is 

typically set to one.  The sign of ∆𝜆𝑔 depends on whether a positive or negative slope is used for 

the arc-length.  For multi-degree-of-freedom systems this is based on the sign of the matrix 

determinant of 𝑲.  The ability to control the slope of the arc-length is what allows the arc-length 

method to change direction and traverse turning or limit points on the equilibrium path.  ∆𝒖𝑔 is 

calculated using Eq. (10) and 𝐿𝑔 is calculated using Eq. (11) where subscript 𝑖 is replaced with g.  

Length ratios can then be set up between the two triangles and unknown values of ∆𝒖0 and ∆𝜆0 

are calculated using ∆𝜆0𝐿0 = ∆𝜆𝑔𝐿𝑔  (12) 

∆𝒖0𝐿0 = ∆𝒖𝑔𝐿𝑔  (13) 

Once the values of ∆𝒖0 and ∆𝜆0 are calculated using Eq. (12) and Eq. (13), the point at the end 

of the arc-length is found by adding these values to the previous known point.  This step provides 
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a starting point for iterations where 𝜆𝑖 and 𝒖𝑖 terms are updated throughout the procedure by 

adding incremental changes to previous estimates for the solution. 𝒖𝑖+1 = 𝒖𝑖 + ∆𝒖𝑖 (14) 𝜆𝑖+1 = 𝜆𝑖 + ∆𝜆𝑖 (15) 

Corresponding iteration points (𝒖𝑖, 𝜆𝑖) are projected normal to the arc-length such that the dot 

product of the vectors used to define the arc-length and corresponding points on the iteration 

path is zero based on orthogonal orientation of vectors.  The equilibrium and constraint equations 

used for solving unknown ∆𝒖𝑖 and ∆𝜆𝑖 are defined respectively as 𝑲𝑖∆𝒖𝑖 = 𝑹𝑖 + ∆𝜆𝑖𝑭 (16) 

⌊(∆𝒖0)𝑇 ∆𝜆0⌋ {∆𝒖𝑖∆𝜆𝑖 } = 0 (17) 

The row vector in Eq. (17) defines the arc-length, which remains constant during iterations 

where the column vector defines the unknown locations on the path normal to the arc-length.  

The equations are typically solved by splitting ∆𝒖𝑖 in Eq. (16) into two components ∆𝒖𝑖𝐼 and ∆𝒖𝑖𝐼𝐼, which are obtained based on known vector 𝑭 and residual 𝑹𝑖 at state 𝒖𝑖. The purpose of 

this two-stage solution procedure is to maintain symmetry of the Jacobian or tangent stiffness 

matrix 𝑲 [3].  Calculation of the ∆𝒖𝑖 components is done by the following steps where ∆𝜆𝑖 is 

temporarily set to one. 𝑲𝑖∆𝒖𝑖𝐼 = 𝑭 (18) 𝑲𝑖∆𝒖𝑖𝐼𝐼 = 𝑹𝑖 (19) 

Vector ∆𝒖𝑖𝐼𝐼 is based on the residual 𝑹𝑖 and can be thought of as a predictor for the next value of ∆𝒖𝑖, where ∆𝒖𝑖𝐼 is a corrector to bring calculated points back to the iteration path.  Scalar ∆𝜆𝑖 
must later be used in combination with ∆𝒖𝑖𝐼 when recombining terms back into ∆𝒖𝑖.  Graphical 
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depiction of ∆𝒖𝑖𝐼 and ∆𝒖𝑖𝐼𝐼 and how they relate to the arc-length and normal iteration path are 

shown in Fig. 9 and Fig. 10 where the index 𝑖 = 0 refers to the known or starting equilibrium 

point, 𝑖 = 1 the first iteration point, 𝑖 = 2 the second and so on.  Labeled points correspond to ① 

for the point located at the end of the arc-length and start of the iteration path, ② for the 

predicted value of ∆𝒖𝑖 using ∆𝒖𝑖𝐼𝐼, and ③ for the corrected value of ∆𝒖𝑖 using ∆𝒖𝑖𝐼 and ∆𝜆𝑖. 
 

 

Figure 9.  Points on normal iteration path for single-degree-of-freedom system 

 



www.manaraa.com

49 
 

 

Figure 10.  Components of ∆𝒖𝑖 for single-degree-of-freedom system 

 

The term ∆𝒖𝑖∗ in Fig. 10 is solved using similar triangles and shows how ∆𝜆𝑖 combines 

with ∆𝒖𝑖𝐼 to bring ∆𝒖𝑖 back to the iteration path.  Scalar ∆𝜆 was previously set to one for 

determination of ∆𝒖𝑖𝐼 such that length ratios of equivalent triangles can be used to solve for ∆𝒖𝑖∗ 
by ∆𝒖𝑖∗∆𝜆𝑖 = ∆𝒖𝑖𝐼1  (20) 

∆𝒖𝑖∗ = ∆𝜆𝑖∆𝒖𝑖𝐼  (21) 

Observe on Fig. 9 how ∆𝒖𝑖𝐼𝐼 overshoots ∆𝒖𝑖 requiring ∆𝒖𝑖∗ or scaled ∆𝒖𝑖𝐼 to bring calculated 

points back to the iteration path.  Combining ∆𝒖𝑖𝐼 and ∆𝒖𝑖𝐼𝐼 terms back into ∆𝒖𝑖 is done by 

adding the ∆𝒖𝑖𝐼𝐼 and ∆𝒖𝑖∗ terms where ∆𝜆𝑖 scales ∆𝒖𝑖𝐼 accordingly. ∆𝒖𝑖 = ∆𝒖𝑖𝐼𝐼 + ∆𝜆𝑖∆𝒖𝑖𝐼 (22) ∆𝜆𝑖 can now be solved using Eq. (17) where ∆𝒖𝑖 is rewritten in terms of Eq. (22).  The resulting 

expression for ∆𝜆𝑖 after the substitution is 

∆𝜆𝑖 = 
−∆𝒖0𝑇∆𝒖𝑖𝐼𝐼∆𝒖0𝑇∆𝒖𝑖𝐼+∆𝜆0 (23) 
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where the negative sign for the expression becomes part of Eq. (22) for the final differencing of 

the ∆𝒖𝑖𝐼𝐼 and scaled ∆𝒖𝑖𝐼 terms.   

The goal of the arc-length method is to minimize the ∆𝜆𝑖 and ∆𝒖𝑖 terms through an 

iterative process similar to the Newton-Raphson method.  Once these terms are known, 

convergence is checked against a user-specified error tolerance.  If convergence criteria are met, 

iterations are stopped and equilibrium or the solution is considered found.  If not, 𝒖𝑖 and 𝜆𝑖 are 

updated using Eq. (14) and Eq. (15) and the process is repeated.  The following procedure in 

Subsection 4.3.1.1 summarizes the arc-length method on a normal path.   

 

4.3.1.1 STEPWISE PROCEDURE FOR ARC-LENGTH METHOD ON NORMAL PATH 

 

1. Specify an arc-length 𝐿 to establish a search range for solutions away from a known or 

guessed point (𝒖𝑖, 𝜆𝑖).  Use iteration count 𝑖 = 0 to begin the process. 

2. Calculate the tangent stiffness matrix 𝑲𝑖 at state 𝒖𝑖. 
3. Find the sign of the matrix determinant of 𝑲𝑖 to determine the slope of the tangent plane. 

4. Solve for ∆𝒖0 and ∆𝜆0 using Eq. (12) and Eq. (13). 

5. Find the point at the end of the arc-length or start of the iteration path using Eq. (14) and 

Eq. (15). 

6. Calculate system vector 𝒇(𝒖𝑖) and tangent stiffness 𝑲𝑖 at the new state 𝒖𝑖 where 𝑖 is 

updated for the next iteration count. 

7. Determine the residual where 𝑹𝑖 = 𝜆𝑖𝑭 − 𝒇(𝒖𝑖). 
8. Calculate ∆𝒖𝑖𝐼  where ∆𝒖𝑖𝐼 = 𝑲𝑖−1𝑭. 

9. Calculate ∆𝒖𝑖𝐼𝐼 where ∆𝒖𝑖𝐼𝐼 = 𝑲𝑖−1𝑹𝑖. 
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10. Calculate ∆𝒖𝑖 and ∆𝜆𝑖 using Eq. (22) and Eq. (23). 

11. Check if ∆𝒖𝑖 is small with respect to 𝒖𝑖 and ∆𝜆𝑖 is small with respect to 𝜆𝑖.  This test may 

be done by taking the ratio of vector norms and seeing if they are less than a given user-

specified error tolerance.  Are ‖∆𝒖𝑖‖/‖𝒖𝑖‖ and |∆𝜆𝑖|/|𝜆𝑖| less than the specified error 

tolerance? 

12. If yes, stop, the solution has been obtained; otherwise, update the iteration count and 

estimates for 𝒖𝑖 and 𝜆𝑖 to improved values using Eq. (14) and Eq. (15) and repeat the 

procedure starting with step 6. 

13. If a solution has been obtained and search for other nearby solutions is desired as part of 

a path following procedure, restart the procedure beginning with step 1.  Use the 

previously found solution as an initial guess.  Arc-length 𝐿 can be held constant or 

reduced in length as needed for restart in the event of convergence failure. 

 

4.3.2 ARC-LENGTH METHOD USING CIRCULAR ITERATION PATH 

 

Use of a circular path for iterations versus a normal path requires modification of 

constraint Eq. (17).  This path may also be referred to as a sphere or hypersphere.  The arc-length 𝐿 must be included in the constraint as it defines the radius of the circular path that remains 

constant during iterations and centered at point (𝒖0, 𝜆0).  The process begins by defining the arc-

length radius as a vector where 

𝒓0 = {∆𝒖0∆𝜆0} (24) 

Components of 𝒓0 are found using Eq. (12) and Eq. (13) for iteration count 𝑖 equal to zero.  The 

point located at the end of 𝒓0 or (𝒖1, 𝜆1) defines the start of the iteration path, which is similar to 
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the previous method.  Corresponding points on the circular iteration path are then located using 

the current radius and to be determined incremental changes in 𝒖 and 𝜆. 

𝒓𝑖+1 = 𝒓𝑖 + {∆𝒖𝑖+1∆𝜆𝑖+1} = {𝒓𝑖1 + ∆𝒖𝑖+1𝑟𝑖2 + ∆𝜆𝑖+1 } (25) 

The constraint equation for the circular path is based on the constant magnitude of vector 𝒓 or 

arc-length 𝐿 and is defined using the dot product as 𝒓𝑖+1 ∙ 𝒓𝑖+1 = 𝐿𝑖2 (26) 

or (𝑟𝑖2 + ∆𝜆𝑖+1)2 + 𝒓𝑖1𝑇𝒓𝑖1 + 2𝒓𝑖1𝑇∆𝒖𝑖+1 + ∆𝒖𝑖+1𝑇∆𝒖𝑖+1 = 𝐿𝑖2 (27) 

through substitution of Eq. (25).  Arc-length 𝐿 can be written in terms of the sum of the squares 

of vector components as 𝐿𝑖2 = 𝑟𝑖22 + 𝒓𝑖1𝑇𝒓𝑖1 (28) 

Substituting Eq. (28) into Eq. (27) yields the resulting constraint equation used for the circular 

iteration path. ∆𝜆𝑖+12 + 2𝑟𝑖2∆𝜆𝑖+1 + 2𝒓𝑖1𝑇∆𝒖𝑖+1 + ∆𝒖𝑖+1𝑇∆𝒖𝑖+1 = 0 (29) 

This equation in conjunction with Eq. (16) are used to solve for the unknown incremental 

changes in 𝒖 and 𝜆.  Subscripts in Eq. (16) are updated to the 𝑖 + 1 iteration count for 

compatibility with Eq. (29). 𝑲𝑖+1∆𝒖𝑖+1 = 𝑹𝑖+1 + ∆𝜆𝑖+1𝑭 (30) 

Vector ∆𝒖𝑖+1 is broken into two components as was done for the method on a normal path using 

Eq. (22) where subscripts are also updated. ∆𝒖𝑖+1 = ∆𝒖𝑖+1𝐼𝐼 + ∆𝜆𝑖+1∆𝒖𝑖+1𝐼  (31) 

Substituting Eq. (31) into Eq. (29) yields the final expression for ∆𝜆𝑖+1, which is quadratic in the 

unknown and having roots (∆𝜆𝑖+1)1 and (∆𝜆𝑖+1)2. 
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 (1 + ∆𝒖𝑖+1𝐼 𝑇𝒖𝑖+1𝐼 ) ∆𝜆𝑖+12 + 2(𝑟𝑖2 + 𝒓𝑖1𝑇∆𝒖𝑖+1𝐼 + ∆𝒖𝑖+1𝐼 𝑇∆𝒖𝑖+1𝐼𝐼 )∆𝜆𝑖+1 (32) 

+ 2𝒓𝑖1𝑇∆𝒖𝑖+1𝐼𝐼 + ∆𝒖𝑖+1𝐼𝐼 𝑇∆𝒖𝑖+1𝐼𝐼 = 0 

The correct value of ∆𝜆𝑖+1 is found by looking at the value of the angle between known vector 𝒓𝑖 
and tentative vector 𝒓𝑖+1.  Selection is made by choosing the value of ∆𝜆𝑖+1, which produces a 

maximum value of the cosine between the two vectors such that the new vector is closest to the 

current. 

𝑐𝑜𝑠(𝜃) = 
𝒓𝑖 ∙ 𝒓𝑖+1𝐿𝑖2  (33) 

Once values of ∆𝜆𝑖+1 and ∆𝒖𝑖+1 have been determined, convergence is checked and 

iterations are continued until a solution is found or specified criteria indicating divergence or 

failure stops the process.  Graphical representation for the first two iteration points is shown in 

Fig. 11 and the procedure is summarized in Subsection 4.3.2.1.  This method has an advantage 

over the normal path as it will more likely intersect a solution curve or equilibrium path that 

exhibits significant changes in slope for fixed values of arc-length.  The disadvantage is the 

possibility of complex roots in Eq. (32).  Work arounds can involve reducing the arc-length and 

repeating the procedure or switching to another variation of the method. For example, Ramm 

[32] developed a method that uses an updated normal path that mimics a curve to avoid this 

issue.  However, complex roots were not a problem for cases studied with the exception of non-

equilibrium or guessed solutions used to initiate the procedure.  In this case, the normal iteration 

path could be used or new guesses supplied in an attempt to avoid complex roots.  Another 

strategy used for this study was to accept only the real component of a complex root and let the 

algorithm proceed as if it were, in fact, real.  In these initiation cases, complex roots were often 

eliminated within several iterations and some intersecting point with a static solution curve was 
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found.  Although this strategy worked for these particular instances, it is probably best not to 

accept complex roots and restart the solver for corresponding solutions as part of a path 

following procedure. 

The main differences in using either the normal or circular arc-length methods are 

typically the location of the initial found point on a solution curve when using a similar initial 

guess, and the spacing between points during path following.  The circular method may tend to 

space points more closely to one another due to the curved iteration path but this can always be 

adjusted by specifying a larger value for arc-length.  Both the circular and normal methods 

worked well for generating solution curves in this chapter. 

 

4.3.2.1 STEPWISE PROCEDURE FOR ARC-LENGTH METHOD ON CIRCULAR PATH 

 

1. Specify an arc-length 𝐿 to establish a search range for solutions away from a known or 

guessed point (𝒖𝑖, 𝜆𝑖).  Use iteration count 𝑖 = 0 to begin the process. 

2. Calculate the tangent stiffness matrix 𝑲𝑖 at state 𝒖𝑖. 
3. Find the sign of the matrix determinant of 𝑲𝑖 to determine the slope of the tangent plane. 

4. Solve for ∆𝒖0 and ∆𝜆0 using Eq. (12) and Eq. (13).  Define vector 𝒓0 using Eq. (24). 

5. Find the point at the end of the arc-length or start of the iteration path using Eq. (14) and 

Eq. (15). 

6. Calculate system vector 𝒇(𝒖𝑖+1) and tangent stiffness 𝑲𝑖+1 at state 𝒖𝑖+1 . 

7. Determine the residual where 𝑹𝑖+1 = 𝜆𝑖+1𝑭 − 𝒇(𝒖𝑖+1). 
8. Calculate ∆𝒖𝑖+1𝐼  where ∆𝒖𝑖+1𝐼 = 𝑲𝑖+1−1 𝑭. 

9. Calculate ∆𝒖𝑖+1𝐼𝐼  where ∆𝒖𝑖+1𝐼𝐼 = 𝑲𝑖+1−1 𝑹𝑖+1. 
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10. Calculate ∆𝒖𝑖+1 and ∆𝜆𝑖+1 using Eq. (31) and Eq. (32) for each root of ∆𝜆𝑖+1. 

11. Define tentative vectors 𝒓𝑖+1 using Eq. (25).  The new vector is chosen based on the 

maximum value of the cosine with the previous vector using Eq. (33). 

12. Check if ∆𝒖𝑖+1 is small with respect to 𝒖𝑖+1 and ∆𝜆𝑖+1 is small with respect to 𝜆𝑖+1.  

This test may be done by taking the ratio of vector norms and seeing if they are less than 

a given user-specified error tolerance.  Are ‖∆𝒖𝑖+1‖/‖𝒖𝑖+1‖ and |∆𝜆𝑖+1|/|𝜆𝑖+1| less than 

the specified error tolerance? 

13. If yes, stop, the solution has been obtained; otherwise update estimates for 𝒖𝑖+1 and 𝜆𝑖+1 

to improved values and repeat the procedure starting with step 6 where 𝑖 is updated for 

the next iteration count.  Updated values are obtained using Eq. (14) and Eq. (15) where 

subscript 𝑖 is updated for the current or 𝑖 + 1 iteration count. 

14. If a solution has been obtained and search for other nearby solutions is desired as part of 

a path following procedure, restart the procedure beginning with step 1.  Use the 

previously found solution as an initial guess.  Arc-length 𝐿 can be held constant or 

reduced in length as needed for restart in the event of convergence failure. 
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Figure 11.  Points on circular iteration path for single-degree-of-freedom system 

 

4.4 METHODS FOR DERIVING GOVERNING EQUATIONS 

 

Governing equations for the pendulum and spring supported collapsible arch used in this 

study were derived using Lagrange’s method or formulated using a method known as analytical 

mechanics [52].  Lagrange’s equation may be written as 𝑑𝑑𝑡 (𝜕𝕃𝜕�̇�) − 
𝜕𝕃𝜕𝒖 + 𝝓𝒖𝑇𝜦 = 𝑸 (34) 

where Lagrangian 𝕃 is the difference between kinetic 𝑇 and potential 𝑉 energy for the system 

being modeled.  Constraint equations are concatenated in column vector 𝝓 where 𝝓 = 𝟎 and 𝝓𝒖 

is the matrix of first-order partial derivatives with respect to components of state vector 𝒖 

containing the generalized degrees-of-freedom.  The vector of constraint forces or Lagrange 
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multipliers are contained in vector 𝜦.  Non-conservative forces such as friction, damping, or 

applied forces are contained in vector 𝑸.  Reducing differential terms in Eq. (34) to first-order 

and appending constraints 𝝓 results in a set of differential and algebraic equations where Eq. (1) 

is rewritten as 𝒇(𝒖, �̇�, 𝑡) = 𝟎 (35) 

to include differential components of state vector 𝒖 and variable 𝑡, which represents time.  

Differential elements �̇� cannot be separated from 𝒇 for this case, which is referred to as an 

implicit set of equations.  Ordinary differential equations (ODEs), on the other hand, are of the 

form �̇� = 𝒇(𝒖, 𝑡) (36) 

where 𝒇(𝒖, 𝑡) can be explicitly defined in terms of �̇�, which is referred to as an explicit set of 

equations.  DAEs can be thought of as an expanded form of ODEs where states 𝒖 have been 

expanded into sets of redundant coordinates.  DAEs for a single-degree-of-freedom pendulum 

constrained to a plane for example would contain variables (𝑥, 𝑦, 𝜃) for both position and 

orientation of the pendulum body where ODEs may only contain the variable 𝜃 for orientation, 

which defines position as well.  Conversion of DAEs to ODEs is possible through index 

reduction where index is defined as the number of times select individual equations in Eq. (35) 

must be differentiated to recover underlying ODEs.  This process may not always be practical 

and deriving DAEs for complex systems does have advantage over derivation of ODEs using 

vector mechanics based on Newton’s laws.  Derivation of DAEs for example is easily automated 

for computer implementation whereas a vector approach for deriving ODEs requires significant 

insight into manual construction of free body diagrams.  DAEs in the form of Eq. (35) can be 

solved using a Newton-Raphson solver.  Convergence criteria inherent to the solver alleviates the 
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need for small time steps needed to maintain accuracy for a dynamic solution.  This behavior is 

not the case for explicit ODE solvers where unknown future states are entirely a function of past 

states 𝒖 and much smaller time steps are needed to avoid accumulation of error.  Based on solver 

type and parameter selection such as time step and error tolerance, solving DAEs can be faster 

and contain less error as compared to solving similar ODE systems explicitly.  An overview of 

DAEs, ODEs, solution methods, index reduction, etc. can be found in Ref. [54]. 

The option for solving DAEs by Newton-Raphson is what makes arc-length methods a 

natural extension as an equilibrium solver where �̇� or derivative terms are set equal to zero 

leaving equations in the form of Eq. (1).  Although DAEs could first be converted to ODEs for 

additional solver options, computational expense for such a conversion can be significant.  

Solving DAEs directly also has the advantage of minimizing the need for post processing of 

solutions to recover variables of interest including the Lagrange multipliers, which are the 

constraint forces for mechanical systems.  A disadvantage of DAEs as compared to ODEs is that 

eigenvalues of the Jacobian for a linearized state about equilibrium do not follow the same rules 

for stability or natural frequency.  Linearized ODE systems for example are considered stable if 

the real, or real components of all eigenvalues are less than or equal to zero where the imaginary 

component determines natural frequency [55].  This rule does not to apply to DAEs but patterns 

for real or non-complex eigenvalues at stable states were noted for cases studied.  Based on 

literature review, straightforward stability rules using eigenvalues of linearized DAEs could not 

be found.  Stability assessment of DAEs in general appears to be an area of ongoing research 

with recent work found in Ref. [56].  In this chapter, the quantity and type of eigenvalues for 

DAEs linearized about candidate equilibrium states are reported and patterns are identified.  

Numeric values are not reported as they have no physical meaning.  However, stability 
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assessment using eigenvalues is performed only after converting systems to ODEs.  This 

additional step is done to help further validate the proposed methodology using arc-length 

solvers. 

Unlike ODEs, solving of DAEs also requires an estimate for the Lagrange multipliers or 

constraint forces as part of the initial conditions used to start the solver.  Initial estimates for 

these constraint forces can be based on an initial guess, arbitrary values such as all zeros or ones, 

or obtained from an initial time step from a dynamic simulation assuming velocity for the 

various components were small or near zero.  They can also be obtained in a more exact sense 

from what is referred to as an initial condition analysis in MSC ADAMS [53].  While all 

methods worked for cases studied, this may not hold true for larger, more complex systems.  As 

is typical for any nonlinear equation solver, the better the initial guess, the more likely the solver 

will converge to a solution.  Providing an initial guess for the constraint forces would be the 

simplest approach and could be followed by a single step dynamic solver attempt in the event of 

static solver failure.  Dynamic solvers would be more likely to converge to a solution for similar 

sets of initial conditions as compared to static solvers as they inherently allow for rigid body 

motion.  The preferred method for determining the initial constraint forces, however, may be to 

perform an initial condition analysis similar to ADAMS.  In this case, the constraint equations 

are used to formulate a constrained optimization problem to determine a consistent set of initial 

states [12, 53].  This formulation is automatically done in ADAMS prior to starting any static or 

dynamic solution procedure. 

There may also be cases where DAEs contain redundant constraints.  While traversing of 

limit points that contain singular Jacobian matrices does not pose a problem for arc-length 

solvers, Jacobian matrices, which are rank deficient, inherently ill conditioned, or singular from 
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redundant constraints, would.  MSC ADAMS solver for example does not tolerate redundant 

constraints and will subjectively delete them when encountered [12].  This auto preprocessing 

would imply time is better spent trying to eliminate redundant constraints manually from models 

in lieu of trying to solve systems with these type constraints left in place.  If redundant 

constraints cannot easily be eliminated or path following of such a system were still desired, use 

of a tensor solver coupled with a geometric constraint equation for a “tensor-arc-length” solver 

may be an option.  Though such a solver is not known to exist, tensor solvers do exist [24] and 

have been incorporated into MSC ADAMS as advanced solver options for static equilibrium 

[12].  These type solvers supplement the Newton-Raphson method with an approximation for the 

Hessian matrix or matrix of second-order partial derivatives from a Taylor series expansion and 

can handle cases where the Jacobian is singular or ill conditioned.  Although optimization based 

solvers such as those contained in MATLAB’s fsolve [15] routine are capable of handling 

singular Jacobians as well and could be parameterized, path following would be difficult as 𝜆 

would need to be specified.  When 𝜆 is treated as known, solver restarts with new initial guesses 

would be required at limit or turning points in solution curves and such solvers may have 

tendency to jump between sections of solution curves causing discontinuities where multiple 

solutions exist for given 𝜆. 

 

4.5 SINGLE-DEGREE-OF-FREEDOM PENDULUM 

 

Equations for the single-degree-of-freedom pendulum shown in Fig. 12 being derived in 

Ref. [53] using Lagrange’s method are 
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𝒇(𝒖, �̈�) = { 𝑚�̈� + 𝛬1𝑚�̈� + 𝛬2 +𝑚𝑔𝐼𝐶𝑀�̈� + 𝛬1𝑙𝑠𝑖𝑛(𝜃) − 𝛬2𝑙𝑐𝑜𝑠(𝜃)} = 𝟎 (37) 

State vector 𝒖 = [𝑥, 𝑦, 𝜃, 𝛬1, 𝛬2]𝑇where (𝑥, 𝑦) denote position, orientation is 𝜃, 𝑚 represents 

pendulum mass, mass moment of inertia 𝐼𝐶𝑀 is with respect to the pendulum center of mass 

(𝐶𝑀), and 𝑔 designates gravity.  Point 𝐴𝑥,𝑦 locates the pendulum pivot constraint relative to a 

global reference frame and 𝑙 is the distance from pivot 𝐴𝑥,𝑦 to 𝐶𝑀.  Constraint forces 𝛬1, 𝛬2 are 

in the 𝑥 and 𝑦 coordinate directions respectively.  Specific values for constants in this case are 𝑙 = 0.127 𝑚, 𝑔 = 9.807 𝑚/𝑠2, 𝑚 = 0.4536 𝑘𝑔, and 𝐼𝐶𝑀 = 2.463𝑥10−3 𝑘𝑔 ∙ 𝑚2. 

 

Figure 12.  Single-degree-of-freedom pendulum 

 

Constraint equations need to be appended to Eq. (37) and second-order derivatives 

reduced to first-order such that equations can be solved using the Newton-Raphson method.  

New variables 𝑢 = �̇�, 𝑣 = �̇�, and 𝑤 = �̇� are introduced which results in the final form of the 

DAEs where expanded state vector 𝒖 = [𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝜃, 𝛬1, 𝛬2]𝑇.  Note that non-bolded 𝑢 refers 

to the x component of velocity whereas bolded 𝒖 refers to the state vector, which includes 𝑢 and 

remaining system variables.  System equations are 
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𝒇(𝒖, �̇�) =
{   
  
   𝑚�̇� + 𝛬1𝑚�̇� + 𝛬2 +𝑚𝑔𝐼𝐶𝑀�̇� + 𝛬1𝑙𝑠𝑖𝑛(𝜃) − 𝛬2𝑙𝑐𝑜𝑠(𝜃)�̇� − 𝑢�̇� − 𝑣�̇� − 𝑤𝑥 − 𝐴𝑥 − 𝑙𝑐𝑜𝑠(𝜃)𝑦 − 𝐴𝑦 − 𝑙𝑠𝑖𝑛(𝜃) }   

  
   = 𝟎 (38) 

The sparse nature of Eq. (38) due to redundant coordinates (𝑥, 𝑦), which are functions of 𝜃, is 

noted as seven of the eight equations contain only two variables each and the eighth equation 

contains four variables.  This sparsity will also lead to a considerable amount of zeroes in the 

Jacobian or 𝑲 matrix of 𝒇(𝒖, �̇�).  The static solution to Eq. (38) requires all velocity and 

acceleration terms be set and equal to zero where 𝒇(𝒖, 𝟎) = 𝒇(𝒖) = 𝟎.  This requirement 

contributes further to sparsity and provides the final format of equations used by the arc-length 

method in search of equilibrium. 

 

4.5.1 RESULTS FOR SINGLE-DEGREE-OF-FREEDOM PENDULUM 

 

Solution curves produced by the arc-length solver where point 𝐴𝑥,𝑦 was set to (0,0) are 

shown in Fig. 13.  Curves were constructed using four runs of the solver in finite loops of 75 

iterations each.  Arc-length parameter 𝐿 was set to plus and minus one for this case.  The solver 

was initiated using pendulum initial conditions 𝜃 = 45 𝑑𝑒𝑔, 𝑥 = 𝑙𝑐𝑜𝑠(𝜃), and 𝑦 = 𝑙𝑠𝑖𝑛(𝜃).  
Guessed values were provided for 𝜆 where the objective for finding equilibrium is the 𝜆 equals to 

zero solution.  A guessed value of 𝜆 equal to zero produced the solution curve with the zero-

crossing at state B where a guessed value of 𝜆 equal to -10 produced the curve containing state 

A.  Varying 𝜆 is what allows arc-length solvers to search for any scalar solution that satisfies the 
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governing equations and essentially “sweeps” the variable space in search of solution curves.  

Once a starting point or arbitrary scalar solution is found, the arc-length parameter 𝐿 is used to 

control spacing or search for adjacent points used to construct curves.  Specifying a positive or 

negative sign for 𝐿 controls the slope or direction in which the search is initially performed.  By 

running the solver through a loop, curves were readily produced by plotting found points in the 

plus and minus 𝜆 directions.  Keeping the 𝐿 parameter relatively small helps the solver to trace 

curves as they turn or change direction.  Curves remained open in this case such that a path 

between candidate equilibrium states via a single solution curve does not exist.  Continued 

plotting of points in the plus and minus 𝜆 directions would reveal asymptotic limits of curves 

towards vertical axes implying an intersection of parallel surfaces in the multi-dimensional 

space.   Blue dots are used for positive 𝜆 values where red dots are used for negative 𝜆.   

Two candidate equilibrium states A and B for 𝜆 equals zero that satisfy static Eq. (38) are 

noted on Fig. 13.  If the initial condition for the pendulum were specified close to the upward 

pointing vertical configuration, a Newton-Raphson solver was found to converge to an angle of 𝜋/2 or state A.  Although this solution numerically satisfies equations for equilibrium, the 

system configuration is unstable.  State B, on the other hand, places the pendulum at an angle of −𝜋/2, which is the physically stable downward pointing configuration. 

 The path following procedure used for identifying these static equilibrium states is based 

on the assumption that equations representing multi-body systems have an unknown number of 

static solution curves and that each of these curves contains a finite number of roots.  Guessed 

values of 𝜆 and arc-length 𝐿 used in combination with initial conditions for state variables are 

used to start the procedure with the objective of finding any point or solution on a given solution 

curve.  Once an arbitrary point is found, arc-length is then specified as part of a path following 



www.manaraa.com

64 
 

procedure to control spacing between points and to construct the solution curve to identify the 

candidate equilibrium roots or 𝜆 equal to zero solutions.  A more systematic approach for 

searching for the starting or arbitrary solution point could involve holding a guess for 𝜆 constant 

while varying arc-length for purpose of scaling a circular iteration path to cover an ever 

increasing range of variables.  Note that geometrically this circular constraint corresponds to a 

hyperspherical constraint in multi-dimensional space [35].  The center point of the circle or 

hypersphere would then remain constant while the arc-length parameter scales the size of the 

hypersphere, which spans a given volume of hyperspace.  Alternately, 𝜆 could be varied while 

holding arc-length constant, which will essentially move the center location of the hypersphere 

throughout the hyperspace.  In the event there is only a single solution curve, such strategies will 

only tend to vary the location of the initial found point on the curve.  If multiple solution curves 

exist, varying these parameters will help increase the likelihood that the additional curves are 

found. 

 There is no guarantee that the proposed procedure would identify all candidate 

equilibrium states as uncertainty would remain as to whether all possible solution curves 

containing a finite number of roots have been found.  However, this uncertainty would be less as 

compared to state-of-practice solution methods that limit searches to 𝜆 equal to zero solutions 

only and require a good initial guess to converge to what is likely the closest proximity solution 

if possible.  In general, there would be increased confidence that all candidate equilibrium states 

have been found through construction of solution curves and knowledge of the physical bounds 

or limits of state variables where roots or candidate states may be found through intersection 

with the 𝜆 equal to zero axis. 
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Figure 13.  Solution curves for single-degree-of-freedom pendulum 

 

A quantitative approach based on evaluation of potential energy can also be used for 

selecting true equilibrium in cases that may not be easily understood.  A ground reference frame 

located below the pendulum center of mass would provide for a positive measure in height for 

comparison of energy between the two states.  State B would be selected as it represents the state 

of lowest energy for the pendulum.  An alternative to using energy for selection of equilibrium 

would be to assess eigenvalues for the linearized system about each state.  The quantity and type 

of eigenvalues of the Jacobian for the two states using DAEs in Eq. (38) are in Table 1.  Both 

equilibrium states A and B include positive real components indicating that stability rules for 

ODEs do not apply.  While both states contain a mixture of complex conjugate and real 

eigenvalues, only state B has no positive or all negative real eigenvalues.  This DAE eigenvalue 

pattern will be shown to remain consistent for stable configurations for the remaining cases 

studied.  Stability rules based on this pattern are not generally implied and are considered as 

future work or outside of the scope of this dissertation, but the pattern could be used as an 

𝜆 B A 
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indicator for stability where final determination would be made using eigenvalues from a similar 

ODE system.  By converting DAEs to an ODE format, established rules using eigenvalues for 

assessment of stability can be applied. 

 

Table 1 

Pendulum DAE eigenvalue quantity 

Type State A State B 

+Re 1 0 

−Re 3 2 

+Re ± Im 2 3 

 

Conversion of Eq. (38) to ODE format for assessment of eigenvalues is done by twice 

differentiating the constraints or the last two equations 𝑓7, 𝑓8 in the set.  Results of the 

differentiation in column form are 

{   
   𝑥 = 𝐴𝑥 + 𝑙𝑐𝑜𝑠(𝜃)�̇� = 𝑢 = −𝑙𝑠𝑖𝑛(𝜃)�̇� = −𝑙𝑠𝑖𝑛(𝜃)𝑤�̈� = �̇� = −𝑙𝑐𝑜𝑠(𝜃)𝑤2 − 𝑙𝑠𝑖𝑛(𝜃)�̇�𝑦 = 𝐴𝑦 + 𝑙𝑠𝑖𝑛(𝜃)�̇� = 𝑣 = 𝑙𝑐𝑜𝑠(𝜃)�̇� = 𝑙𝑐𝑜𝑠(𝜃)𝑤�̈� = �̇� = −𝑙𝑠𝑖𝑛(𝜃)𝑤2 + 𝑙𝑐𝑜𝑠(𝜃)�̇�}   

   
 (39) 

These equations are substituted into Eq. (38) eliminating individual equations𝑓4, 𝑓5, 𝑓7, 𝑓8.  

Defining constraint forces 𝛬1 and 𝛬2 in terms of the first two equations 𝑓1, 𝑓2 in Eq. (38) 

eliminates these equations as well resulting in the following first-order ODE set. 

𝒇(𝒖) = {(𝐼𝐶𝑀 +𝑚𝑙2)�̇� + 𝑚𝑔𝑙𝑐𝑜𝑠(𝜃)�̇� − 𝑤 } = 𝟎 (40) 

Note how the mass moment of inertia includes the additional 𝑚𝑙2 term to account for the missing 

constraint equations as 𝐼𝐶𝑀 is defined relative to the pendulum center of mass and not pivot point 𝐴𝑥,𝑦.  Equilibrium states in Eq. (40) can be found be setting derivative terms �̇� and �̇� to zero and 
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solving the static problem.  Values of ±𝜋/2 for 𝜃 provides the solution for 𝒇(𝒖) = 𝟎 and are 

similar to the results found by the arc-length solver using the DAEs. 

Evaluation of eigenvalues for stability requires conversion of equations to state form 

followed by linearization about the candidate equilibrium states.  The state or explicit form of 

Eq. (40) is 

{�̇��̇�} = { 𝑤−𝑚𝑔𝑙𝑐𝑜𝑠(𝜃)/(𝐼𝐶𝑀 +𝑚𝑙2)} (41) 

where the state vector is defined as 𝒖 = [𝜃, 𝑤]𝑇 and equilibrium states are 𝒖𝐴 = [𝜋/2,0]𝑇, 𝒖𝐵 =[−𝜋/2,0]𝑇.  Linearization of Eq. (41) through Taylor series expansion results in 

{ �̇� − �̇�𝑆�̇� − �̇�𝑆} = [ 0 1𝑚𝑔𝑙𝑠𝑖𝑛(𝜃𝑆)/(𝐼𝐶𝑀 +𝑚𝑙2) 0] { 𝜃 − 𝜃𝑆𝑤 − 𝑤𝑆} (42) 

where subscript S refers to a specific state being A or B in this instance.   Term 𝒇(𝒖𝑆) is not 

shown in the expansion as terms are zero at equilibrium.  Eq. (42) represents a linear state space 

model for the pendulum where stability analysis using eigenvalues of the Jacobian or system 

matrix may be performed.  Eigenvalues are reported in Table 2. 

 

Table 2 

Pendulum ODE eigenvalues, Re ± Im (Hz) 

State A State B 

  1.2097 0 + 1.2097i 

–1.2097 0 – 1.2097i 

 

These eigenvalues can be used for assessment of stability based on rules in Ref. [55] when they 

fall in a complex plane of real and imaginary axes.  State A for the upward pointing 

configuration is unstable due to a positive real value where the zero real values for the complex 

conjugate roots in state B indicate a stable configuration with a natural frequency of 1.2097 Hz 
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for small displacements about equilibrium.  Selection of state B for equilibrium using 

eigenvalues is seen to provide similar results to those obtained using energy. 

 

4.6 SPRING SUPPORTED ARCH 

 

The next system studied was the spring supported arch shown in Fig. 14.  Both the 

collapsing and non-collapsing cases were evaluated by varying spring constant 𝑘𝑠.  Spring 

constants were set to 17.5 𝑁/𝑚 and 87.6 𝑁/𝑚 for the two cases respectively.  Bars are under the 

influence of gravity and mass and geometry of the bars are similar to the pendulum.    Point 𝐴𝑥,𝑦 

represents a pinned connection to ground, 𝐵𝑥,𝑦 is the center of mass of bar one with position (𝑥1, 𝑦1) and orientation 𝜃1, 𝐶𝑥,𝑦 is the pinned connection between bar one and bar two, 𝐷𝑥,𝑦 is 

the center of mass of bar two with position (𝑥2, 𝑦2) and orientation 𝜃2, and 𝐸𝑥,𝑦 is a pin-slider 

connection attached to ground.  One end of the spring is attached to ground while the other end 

attaches to the slider connection at 𝐸𝑥,𝑦.  Constraint forces 𝜦 are broken into components and 

located at each joint.  Vector notation for bar one shows how points in the system can be 

referenced relative to a global reference frame or ground.  Vectors are not shown for other points 

for purpose of clarity on the figure.   
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Figure 14.  Spring supported arch 

 

The Lagrangian 𝕃 for the system is 𝕃 = 𝑇 − 𝑉 (43) 𝑇 = 0.5𝑚(�̇�12 + �̇�12 + �̇�22 + �̇�22) +  0.5𝐼𝐶𝑀(�̇�12 + �̇�22)  𝑉 = 𝑚𝑔(𝑦1 + 𝑦2) + 0.5𝑘𝑠(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0)2 

which accounts for kinetic energy from translation and rotation of the bars, potential energy of 

the bars from gravity, and strain or potential energy from displacement of the free end of the 

spring with an initial position of 𝐸𝑥0.  The three constraints can be expressed in vector format as �⃗⃗� + 𝑩𝑨⃗⃗⃗⃗⃗⃗ = �⃗⃗�  (44) �⃗⃗� + 𝑫𝑪⃗⃗⃗⃗⃗⃗ + 𝑪𝑩⃗⃗⃗⃗⃗⃗ = �⃗⃗�  �⃗⃗� + 𝑬𝑫⃗⃗⃗⃗⃗⃗ = �⃗⃗�  
and further broken into components for obtaining an expression for 𝝓.  The first two expressions 

in Eq. (44) are broken into their 𝑥 and 𝑦 components where only the 𝑦 component is required for 

point 𝐸 in the third expression as the end of bar two is unconstrained in the 𝑥 direction.  Setting 
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vertical displacement 𝐸𝑦 equal to zero for the horizontal slider constraint and breaking Eq. (44) 

into 𝑥 and 𝑦 components results in 

𝝓 = {  
  𝑥1 − 𝑙𝑐𝑜𝑠(𝜃1) − 𝐴𝑥𝑦1 − 𝑙𝑠𝑖𝑛(𝜃1) − 𝐴𝑦(𝑥2 − 𝑥1) − 𝑙(𝑐𝑜𝑠(𝜃2) + 𝑐𝑜𝑠(𝜃1))(𝑦2 − 𝑦1) − 𝑙(𝑠𝑖𝑛(𝜃2) + 𝑠𝑖𝑛(𝜃1))𝑦2 + 𝑙𝑠𝑖𝑛(𝜃2) }  

  
 (45) 

Inserting Lagrangian 𝕃 in Eq. (43) and constraints 𝝓 in Eq. (45) into Lagrange’s equation Eq. 

(34) where 𝑸  is a vector of zeroes provides for the following equation set used to describe the 

system.  The state vector 𝒖 for the two links and constraint force vector 𝜦 are defined as 𝒖 = [𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜃1, 𝜃2]𝑇and 𝜦 = [𝛬11, 𝛬21, 𝛬12, 𝛬22, 𝛬23]𝑇 at this point in the derivation. 

𝒇(𝒖, �̈�) =
{  
  
  𝑚�̈�1 + 𝛬11 − 𝛬12𝑚�̈�1 + 𝛬21 − 𝛬22 +𝑚𝑔𝑚�̈�2 + 𝑘𝑠(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0) + 𝛬12𝑚�̈�2 + 𝛬22 + 𝛬23 +𝑚𝑔𝐼𝐶𝑀�̈�1 + 𝑙(𝛬11 + 𝛬12)𝑠𝑖𝑛(𝜃1) − 𝑙(𝛬21 + 𝛬22)𝑐𝑜𝑠(𝜃1)𝐼𝐶𝑀�̈�2 + 𝑙(𝛬12𝑠𝑖𝑛(𝜃2) − 𝛬22𝑐𝑜𝑠(𝜃2) + 𝛬23𝑐𝑜𝑠(𝜃2)) + ⋯⋯− 𝑘𝑠𝑙(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0)𝑠𝑖𝑛(𝜃2) }  

  
  = 𝟎 (46) 

Reducing the system to first-order through introduction of variables 𝑢𝑗 = �̇�𝑗, 𝑣𝑗 = �̇�𝑗 and 𝑤𝑗 = �̇�𝑗  
where subscript 𝑗 = 1,2 for each bar and appending constraints 𝝓 in Eq. (45) results in the 

following set of DAEs.  The seventeen by one state vector is now defined as 𝒖 =[𝑢1, 𝑣1, 𝑢2, 𝑣2, 𝑤1, 𝑤2, 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜃1, 𝜃2, 𝛬11, 𝛬21, 𝛬12, 𝛬22, 𝛬23]𝑇 
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𝒇(𝒖, �̇�) =

{  
   
   
  
   
   
  𝑚�̇�1 + 𝛬11 − 𝛬12𝑚�̇�1 + 𝛬21 − 𝛬22 +𝑚𝑔𝑚�̇�2 + 𝑘𝑠(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0) + 𝛬12𝑚�̇�2 + 𝛬22 + 𝛬23 +𝑚𝑔𝐼𝐶𝑀�̇�1 + 𝑙(𝛬11 + 𝛬12)𝑠𝑖𝑛(𝜃1) − 𝑙(𝛬21 + 𝛬22)𝑐𝑜𝑠(𝜃1)𝐼𝐶𝑀�̇�2 + 𝑙(𝛬12𝑠𝑖𝑛(𝜃2) − 𝛬22𝑐𝑜𝑠(𝜃2) + 𝛬23𝑐𝑜𝑠(𝜃2)) + ⋯⋯− 𝑘𝑠𝑙(𝑥2 + 𝑙𝑐𝑜𝑠(𝜃2) − 𝐸𝑥0)𝑠𝑖𝑛(𝜃2)�̇�1 − 𝑢1�̇�1 − 𝑣1�̇�2 − 𝑢2�̇�2 − 𝑣2�̇�1 − 𝑤1�̇�2 − 𝑤2𝑥1 − 𝑙𝑐𝑜𝑠(𝜃1) − 𝐴𝑥𝑦1 − 𝑙𝑠𝑖𝑛(𝜃1) − 𝐴𝑦(𝑥2 − 𝑥1) − 𝑙(𝑐𝑜𝑠(𝜃2) + 𝑐𝑜𝑠(𝜃1))(𝑦2 − 𝑦1) − 𝑙(𝑠𝑖𝑛(𝜃2) + 𝑠𝑖𝑛(𝜃1))𝑦2 + 𝑙𝑠𝑖𝑛(𝜃2) }  

   
   
  
   
   
  

= 𝟎 (47) 

 

The equation set was verified through dynamic simulation using a previously developed 

nonlinear solver suite written in MATLAB [51] and commercial software MSC ADAMS.  Initial 

conditions for the bars were similar to Fig. 14 where 𝜃1 was set to 45 degrees and 𝜃2 to -45 

degrees with zero initial rates.  Point 𝐴𝑥,𝑦 was set to the origin or (0,0) coordinate.  Results for 

the x position of bar one versus time are shown in Fig. 15 and Fig. 16 for the collapsing and non-

collapsing cases where MATLAB and ADAMS results are coincident giving the appearance of a 

single curve.  Both the MATLAB and ADAMS solvers used a Newton-Raphson method where 

results for the simulation were found using a time step of 0.0005 seconds.  Fig. 15 for the 

collapsing case shows bar one snapping through to an inverted orientation with the 𝐶𝑀 swinging 

past point 𝐴𝑥,𝑦 in the horizontal axis, reversing direction, and snapping back past its original 

configuration in an oscillatory manner.  Fig. 16, on the other hand, shows bar one oscillating 
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about a much smaller displacement as spring force is sufficient to prevent collapse from 

occurring. 

 

 

Figure 15.  Dynamic simulation of collapsing arch 

 

 

Figure 16.  Dynamic simulation of non-collapsing arch 
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Candidate equilibrium states for the collapsing and non-collapsing cases were also 

verified using ADAMS and compared to those found using static solution curves produced by 

arc-length solvers.  State vectors are recorded in tables in the following results and discussion 

sections.  This recording was accomplished only after the list of candidate states obtained 

through path following of static solution curves was complete.  Once these states were known, a 

similar ADAMS model was manually configured in sufficiently close proximity to each state 

providing necessary initial conditions that would cause available static solvers to converge to the 

desired configurations.  A direct comparison of results for each state variable was then made to 

confirm similarity.  For the non-collapsing case, the as modeled configuration was in closest 

proximity to true equilibrium such that the default Newton-Raphson solver in ADAMS 

converged to this solution.  The collapsing case, however, proved more challenging as all 

Newton-Raphson based solvers failed while the more advanced solvers based on optimization 

algorithms converged to unstable pre-collapse configurations when using default settings.  

Failure of the Newton-Raphson solvers was due to several of the state variables having to pass 

through limit points or change direction in order to reach the inverted configuration.  The x 

position of bar one on Fig. 15 for example must first increase from its initial configuration 

towards the horizontal limit prior to snapping through and decreasing towards the inverted 

configuration.  Through trial and error, it was found that the ALIMIT parameter could be 

adjusted under the ADAMS solver settings to increase the allowed value for incremental 

displacement with respect to angular state variables.  This setting enabled the solver to “jump 

over” or past limit points in this case and locate equilibrium.  Setting the value too high, 

however, caused it to converge to other unstable configurations.  Although such a procedure 



www.manaraa.com

74 
 

could be used, uncertainty would still remain as to whether true equilibrium was found and a 

pictorial of solution curves with candidate equilibrium states at zero-crossings would also be 

missing. 

 

4.6.1 RESULTS FOR COLLAPSING ARCH 

 

Solution curves for the collapsing case produced by an arc-length solver using MATLAB 

are shown in Fig. 17 through Fig. 22.  Plots were selected using position and orientation 

information from the bar one center of mass although any one or all of the state variables could 

have been selected.  Multiple curves were identified for this case and were separated into two 

plots each for clarity of figures.  As previously mentioned, curves may exhibit non-physical 

values for given variables at non-zero solutions for 𝜆.  This behavior is due to the fact that only 

the 𝜆 = 0 solutions are admissible for equilibrium while other values modify governing 

equations by including the scalar value.  Although the non-zero 𝜆 solutions satisfy equations 

numerically, they are only used to construct static solution curves to follow or provide a path 

from one state to another.  This formulation left only scalers 𝜆 and arc-length 𝐿 as parameters 

that could be varied as part of the initial guess used to start solvers.  By varying these parameters, 

initial found points at different locations on single curves or points on different curves could be 

found.  The solvers could not traverse what appeared to be limit points located at the 𝜆 = 20 

axes on Fig. 17 and Fig. 18 and at the 𝜆 = −20 axes on Fig. 20 and Fig. 21 during path 

following.  These special points are asymptotic limits as new points could be continually found 

without ever crossing the limit.  Spacing between points also became smaller for every new point 

found giving the appearance of a closed curve in these sectional views of hyperspace.  In these 
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cases, the solver could be restarted to trace the remainder of the curve in opposite direction by 

changing the sign of arc-length 𝐿.  Curves shown in Fig. 17 through Fig. 19 were traced in this 

manner.  

DAE eigenvalue quantity for candidate equilibrium states using Eq. (47) are in Table 3; 

state vectors including the initial configuration specified as State I are in Table 4; strain or 

potential energy for the spring are in Table 5.  Potential energy due to gravity was not included 

as it is altitude or elevation dependent and the datum for zero potential energy is arbitrary.  If 

elevation were large, potential energy due to gravity would dominate the magnitude of the 

energy term and potentially mask or eliminate potential energy of the spring due to numerical 

precision or the number of significant digits used to represent the quantity.   

State vectors in Table 4 were truncated to eliminate the first six velocity terms, which are 

zero for static solutions.  Four candidate states A through D were found and identified on graphs.  

States C and D are unique as they were not found in an exact sense by the arc-length solver but 

implied graphically as locations for zero-crossings with bars in the vertical pointing down and up 

configurations.  The velocity terms for this case, or first six state variables, were approximately 

zero but the vertical constraint forces significantly exceeded the weight of the mechanism for a 

non-physical solution.  Closer investigation of these points revealed that curves became 

asymptotic as they approached the 𝜆 equals zero axis.  The reciprocal of the matrix condition 

number for the Jacobian also became increasingly small indicating near singularity or an ill 

conditioned problem.  Attempts to find an exact solution using MATLAB’s fsolve routine [15], 

which is able to handle singularity of the Jacobian, also failed or produced warnings for possible 

error.  An additional solving attempt was made by manually specifying a state vector for the 

exact geometric configurations of the implied solutions and inserting into 𝒇(𝒖).  This strategy 
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left equations containing velocity terms as non-zero further validating that an exact equilibrium 

solution does not exist at these locations. 

 

 

Figure 17.  Solution curve for bar one x position, 𝑘𝑠 = 17.5 𝑁/𝑚 

 

 

Figure 18.  Solution curve for bar one y position, 𝑘𝑠 = 17.5 𝑁/𝑚 

A 

B 
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Figure 19.  Solution curve for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 

 

 

Figure 20.  Additional solution curves for bar one x position, 𝑘𝑠 = 17.5 𝑁/𝑚 

 

A 

B 

C, D 
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Figure 21.  Additional solution curves for bar one y position, 𝑘𝑠 = 17.5 𝑁/𝑚 

 

 

Figure 22.  Additional solution curves for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 

  

C 
D 

C D 
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Table 3 

Collapsing arch DAE eigenvalue quantity 

Type State A State B State C* State D* 

+Re 0 3 2 1 

−Re 5 6 5 6 

+Re ± Im 6 4 5 5 

* Implied state 

 

Table 4 

Candidate equilibrium states for collapsing arch 1 

Variable State I 2 State A State B State C* State D* 𝑥1(𝑚𝑚) 89.8017 69.1794 -125.6436 -0.4293 -0.3886 𝑦1(𝑚𝑚) 89.8017 -106.5047 18.5166 -127.0000 127.0000 𝑥2(𝑚𝑚) 269.4076 207.5383 -376.9284 -0.4293 -0.3886 𝑦2(𝑚𝑚) 89.8017 -106.5047 18.5166 -127.0000 127.0000 𝜃1(𝑟𝑎𝑑) 0.7854 -0.9947 2.9953 -1.5742 1.5739 𝜃2(𝑟𝑎𝑑) -0.7854 0.9947 3.2879 1.5674 -1.5677 𝛬11(𝑁) -2.6663 1.4448 15.0919 6.2907 6.2907 𝛬21(𝑁) -4.4482 -4.4482 -4.4482 1847.2492 -2035.2284 𝛬12(𝑁) -1.9999 1.4448 15.0919 6.2907 6.2907 𝛬22(𝑁) -0.6663 -0.0000 -0.0000 1851.6974 -2030.7802 𝛬23(𝑁) -3.1151 -4.4482 -4.4482 -1856.1456 2026.3319 
1 Bar one x, y position and angle highlighted red 
2 Initial configuration 

* Implied state 

 

Table 5 

Strain energy (𝑁 ∙ 𝑚) for collapsing arch 

State A State B State C* State D* 

0.0596 6.5031 1.1298 1.1298 

* Implied state 

 

Candidate states C and D could be eliminated based on failure to provide an exact 

solution.  If this analysis had not been performed, they could, however, still be considered for 

further assessment.  Prior to making a selection for equilibrium from the candidate states, a 

measure of how close the states are to the initial configuration was defined.  A metric based on 
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the difference ratio of vector norms was used by defining the initial state vector as 𝒖I and 

candidate state vectors as 𝒖S where subscript “S” denotes the specific individual states and “I” 

denotes the initial state.  The resulting expression is 𝑟𝑎𝑡𝑖𝑜 = ‖𝒖I − 𝒖S‖/‖𝒖I‖ (48) 

Difference ratios using Eq. (48) for states A through D are shown in Table 6.   

Table 6 

Difference ratios with respect to state I for collapsing arch 

State A State B State C* State D* 

0.9167 2.2149 10.3986 11.3990 

* Implied state 

Since A has the smallest ratio, it is closest to the as modeled initial configuration of the 

arch.  State A is therefore selected as the starting point for evaluation among the candidate states 

with a strain energy of 0.0596 (𝑁 ∙ 𝑚).  Moving towards state B along the solution curves 

displayed using sectional plots in Fig 17 through Fig. 19 reveals an increase in strain energy such 

that state B is rejected for A.  Both states C and D are even further away from state A, having 

higher strain energy and are also rejected.  State A is therefore selected as equilibrium being 

consistent with results obtained from a dynamic simulation with added damping in ADAMS.  

Real eigenvalues using DAEs from Eq. (47) in Table 3 are shown to be all negative for state A 

where rejected states include positive real eigenvalues.  Patterns for complex conjugate pairs 

show positive real component eigenvalues only. 

Conversion of Eq. (47) to ODE format for stability assessment using eigenvalues uses a 

similar approach as was done for the pendulum where constraint equations, 𝑓13 through 𝑓17 in 

this case, are twice differentiated and substituted back into the equation set.  The process can be 

simplified by observing that 𝜃2 = −𝜃1 and 𝑦2 = 𝑦1from the constraints.  This results in the 
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following set of first-order ODEs written in explicit form.  The state vector for the reduced 

system is 𝒖 = [𝜃1, 𝑤1]𝑇. 

 {�̇�1�̇�1} = { 𝑤1−4𝑚𝑙2sin (2𝜃1))𝑤12+8𝑘𝑠𝑙2𝑠𝑖𝑛(2𝜃1)−4𝐸𝑥0𝑘𝑠𝑙𝑠𝑖𝑛(𝜃1)− 2𝑚𝑔𝑙𝑐𝑜𝑠(𝜃1)(10𝑚𝑙2 − 8𝑚𝑙2𝑐𝑜𝑠2(𝜃1)+ 2𝐼𝐶𝑀) } (49) 

Candidate equilibrium states are found by setting velocity and acceleration terms in Eq. 

(49) to zero and solving for 𝜃1 in the remaining equation. 𝑓2(𝜃1) = 8𝑘𝑠𝑙2𝑠𝑖𝑛(2𝜃1) − 4𝐸𝑥0𝑘𝑠𝑙𝑠𝑖𝑛(𝜃1) −  2𝑚𝑔𝑙𝑐𝑜𝑠(𝜃1) = 0 (50) 

Graphical representation of Eq. (50) plotted between ±𝜋 with similar found states to the original 

DAE system is shown in Fig. 23.  Implied states C and D that were previously dismissed do not 

show up on this figure as zero-crossings further validating they are, in fact, not candidates for 

equilibrium.  

 

Figure 23.  ODE static solution curve for bar one angle, 𝑘𝑠 = 17.5 𝑁/𝑚 

 

Eq. (49) is linearized about states 𝒖𝐴 = [−0.9947,0]𝑇, 𝒖𝐵 = [2.9953,0]𝑇 and eigenvalues are 

reported in Table 7.  Equations for the linearized system are not shown as was for the pendulum 

A B 
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due to the extensive algebraic expressions in the system matrix.  Results were validated using 

ADAMS by manually configuring the arch near the given states and running a Newton-Raphson 

based equilibrium solver such that it would converge to the closest available equilibrium 

configuration.  A linearization was then performed; it output similar eigenvalues.  The 

linearization procedure used by ADAMS is based on a state space reduction method for reducing 

the governing DAEs to a set of minimal states [57].  This approach essentially recovers the 

underlying ODEs as redundant variables are eliminated and eigenvalues can then be used for 

stability assessment and determination of natural frequency.  State A is shown to be stable with a 

natural frequency of 1.3741 Hz with state B being unstable.  State A therefore represents true 

equilibrium similar to the previous assessment using strain energy.  Real DAE eigenvalues were 

all negative for this state as an indicator for stability as well. 

 

Table 7 

Collapsing arch ODE eigenvalues, Re ± Im (Hz) 

State A State B 

0 + 1.3741i   3.0528 

0 – 1.3741i –3.0528 

 

4.6.2 RESULTS FOR NON-COLLAPSING ARCH 

 

Solution curves for the non-collapsing case produced by an arc-length solver using 

MATLAB are shown in Fig. 24 through Fig. 29.  Figures showing a detailed view of the solution 

centered near the 𝜆 equal to zero axis contain an additional section of curve that was left off of 

the larger, complete solution plots for clarity of figures.  Six candidate equilibrium states were 

found where states E and F were implied zero-crossings similar to those in the previous case.  

Although this case is somewhat trivial as the initial and resultant stable equilibrium 
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configurations provide for a closest proximity solution for any nonlinear solver, plots produced 

by the arc-length solver are unique and will help further validate the proposed procedure for 

identifying equilibrium.  DAE eigenvalue quantity, state vectors, strain energy stored in the 

spring, and difference ratios of candidate states S with respect to initial state I are shown in 

Tables 8 through 11 respectively. 

 

 

Figure 24.  Total solution curve for bar one x position, 𝑘𝑠 = 87.6 𝑁/𝑚 
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Figure 25.  Partial solution curve for bar one x position, 𝑘𝑠 = 87.6 𝑁/𝑚 

 

 

Figure 26.  Total solution curve for bar one y position, 𝑘𝑠 = 87.6 𝑁/𝑚 
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Figure 27.  Partial solution curve for bar one y position, 𝑘𝑠 = 87.6 𝑁/𝑚 

 

 

Figure 28.  Total solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 
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Figure 29.  Partial solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 

 

Table 8 

Non-collapsing arch DAE eigenvalue quantity 

Type State A State B State C State D State E* State F* 

+Re 0 0 1 3 2 1 

−Re 5 5 6 6 5 6 

+Re ± Im 6 6 5 4 5 5 

* Implied state 

  

D E 

A 

C 

B 

F 
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Table 9 

Candidate equilibrium states for non-collapsing arch 1 
Variable State I 

2
 State A State B State C State D State E* State F* 𝑥1(𝑚𝑚) 89.8017 84.1807 97.3887 124.9807 -126.9467 -1.4605 -1.9329 𝑦1(𝑚𝑚) 89.8017 -95.0925 81.5137 22.5603 3.7186 -126.9924 126.9848 𝑥2(𝑚𝑚) 269.4076 252.5446 292.1686 374.9396 -380.8374 -1.4630 -1.9279 𝑦2(𝑚𝑚) 89.8017 -95.0925 81.5137 22.5603 3.7186 -126.9924 126.9848 𝜃1(𝑟𝑎𝑑) 0.7854 -0.8462 0.6969 0.1786 -3.1709 -1.5823 1.5860 𝜃2(𝑟𝑎𝑑) -0.7854 0.8462 -0.6969 -0.1786 3.1709 -4.7239 -1.5555 𝛬11(𝑁) -2.6663 1.9688 -2.6574 -12.3211 75.9169 31.4543 31.4529 𝛬21(𝑁) -4.4482 -4.4482 -4.4482 -4.4482 -4.4482 2,726.4447 -2,066.9384 𝛬12(𝑁) -1.9999 1.9688 -2.6574 -12.3211 75.9169 31.4543 31.4529 𝛬22(𝑁) -0.6663 -0.0000 0.0000 0.0000 0.0000 2,730.8929 -2,062.4902 𝛬23(𝑁) -3.1151 -4.4482 -4.4482 -4.4482 -4.4482 -2,735.3412 2,058.0420 

1 Bar one x, y position and angle highlighted red 
2 Initial configuration 

* Implied state 

 

Table 10 

Strain energy (𝑁 ∙ 𝑚) for non-collapsing arch 

State A State B State C State D State E* State F* 

0.0221 0.0403 0.8669 32.9097 5.6494 5.6490 

* Implied state 

 

Table 11 

Difference ratios with respect to state I for non-collapsing arch 

State A State B State C State D State E* State F* 

0.8426 0.0860 0.4726 2.2655 15.2658 11.5164 

* Implied state 

 

Starting with the difference ratios in Table 11, state B is found to be in closest proximity 

to the initial configuration state I.  Solution curves in Fig. 24 through Fig. 29 show states in the 

order of B-C-A-F and B-D-E when following the curves or paths on figures in either direction 

when starting from state B.  The arc-length solver was run four times to find arbitrary starting 

values on curves and then run through a finite loop in the plus and minus arc-length directions to 
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construct curves.  Fig. 26 for example exhibits non-smooth or sharp portions to the curve that the 

arc-length solver could not trace past.  For these cases, the solver behaved as if near an 

asymptotic limit as new points were continually found, but distance covered on the graph 

became less and less.  The smother, self-intersecting loop on Fig. 25, on the other hand, was 

traced in a single run of the solver loop.  Note that information on all figures is being solved 

simultaneously as these are individual components of state vector 𝒖.  Figures are essentially 

sectional views with respect to individual states in the multi-dimensional space or hyperspace; 

this is why they appear different from one another.  States E and F are referred to as implied due 

to the appearance of possible zero-crossings on figures.  Reciprocals of the condition number of 

the Jacobian for these states are very small indicating near singularity such that they are likely 

asymptotic limits and not equilibrium states.  As was done previously, both states are still 

included as candidates for equilibrium. 

The process of identifying equilibrium begins with state B, which is closest to the initial 

configuration.  Following the B-C-A-F path on solution curves, state C is found to have higher 

strain energy such that it is rejected.  The next state A has lower strain energy; however, the 

system must first pass through the higher energy state C from the lower state B such that it too is 

rejected.  This conclusion is drawn on both understood physical behavior of the simple system 

and through following the path from one state towards another on the solution curves.  In a 

physical sense, the bars would have to pass through the horizontal configuration prior to 

snapping through to the inverted position.  The gravity load in this case is not sufficient to 

overcome spring force leaving the arch in a non-collapsing configuration.  The next state F has 

significantly higher strain energy, which eliminates this state as well.  Remaining states are 

evaluated by traveling in the opposite direction from state B on path B-D-E.  Both D and E are of 
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higher strain energy such that they are rejected.  State B is therefore selected as equilibrium.  

State A is noted as a physically admissible and stable equilibrium, although it would be 

impossible to reach from the initial configuration without inclusion of additional force needed to 

compress the spring.  Note that by following the path between states on solution curves, rejection 

of states C and D would eliminate any proceeding states as it is not possible to pass through 

higher energy configurations without application of additional force.  Similar to the case of the 

collapsing arch, real eigenvalues using DAEs from Eq. (47) in Table 8 are shown to be all 

negative for stable states A and B where rejected states include positive real eigenvalues. 

Eq. (49) and Eq. (50) remain similar for the ODEs used to describe the system where 

only spring constant 𝑘𝑠 is updated for the non-collapsing case.  Graphical results for equilibrium 

states using these equations are plotted in Fig. 30 with similar found states to the original DAE 

system.  The angle for state D is reported in a positive sense with the ±𝜋 limits of the plot.  The 

angle is reported in a negative sense for the DAE system in Table 9 but is, in fact, the same 

angle.  Plotting the static solution curve within these limits provides for a consistent order among 

states when comparing the ODE and DAE systems.  Implied states E and F do not show up as 

zero-crossings further validating they are not candidates for equilibrium. 
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Figure 30.  ODE static solution curve for bar one angle, 𝑘𝑠 = 87.6 𝑁/𝑚 

 

Eigenvalues for the linearized states using the ODEs are shown in Table 12.  These results were 

also validated using ADAMS similar to the previous case.  State B that was identified as 

equilibrium and state A that was identified as physically possible for equilibrium are both shown 

to be stable with natural frequencies of 2.0925 Hz and 2.6187 Hz respectively.  Dismissed states 

C and D are both shown to be unstable due to positive, real eigenvalues. 

 

Table 12 

Non-collapsing arch ODE eigenvalues, Re ± Im (Hz) 

State A State B State C State D 

0 + 2.6187i 0 + 2.0925i   2.5851   7.0582 

0 – 2.6187i 0 – 2.0925i –2.5851 –7.0582 

 

4.7 PROPOSED PROCEDURE FOR IDENTIFYING STATIC EQUILIBRIUM 

 

Based on methods and results for the pendulum, collapsing arch cases, and non-collapsing 

arch cases, the following procedure for identifying equilibrium for general systems is proposed.  

A C 

B D 
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This procedure is based on path following of static solution curves for nonlinear systems of 

equations being derived from and representing physics-based systems. 

1. Select any single or a combination of state variables for plotting of static solution curves 

using arc-length solvers. 

2. Identify where solution curves cross the 𝜆 equal to zero axis and label these as candidate 

equilibrium states accordingly. 

3. Determine the difference ratios between the as modeled initial state I and found candidate 

states S using Eq. (48).  Choose the state with the smallest ratio as the initial candidate 

equilibrium state for consideration. 

4. If additional candidate equilibrium states are present on a solution curve, identify the 

order in which states occur by following the curve or path in either direction starting from 

the initial candidate state. 

5. Using this order and starting with the initial candidate state, accept or reject remaining 

states based on change in potential energy.  States leading to an increase in potential 

energy would be rejected along with any remaining states for a given direction along a 

solution curve.  New states would be accepted when leading to a decrease in potential 

energy for a given direction along a solution curve.  If a path between states does not 

exist, consider all states simultaneously.  Equilibrium is the state that reduces potential 

energy to a minimum with respect to a given static solution curve or minimizes potential 

energy in the event a relation among states via a solution curve does not exist. 

6. Optionally convert equations to a linearized state space format and extract eigenvalues 

for each individual state.  These eigenvalues can be used as a secondary metric to verify 

stability at the chosen equilibrium. 
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4.8 CONCLUSIONS 

 

Arc-length solvers were used to successfully identify the many possible equilibrium 

states for nonlinear systems representing a pendulum and two variations of a spring supported 

arch.  Graphical representation of static solution curves was accomplished through plotting of 

selected state variables against a common variable 𝜆.  Crossings of solution curves at the 𝜆 equal 

to zero axis identified candidate equilibrium states and gave insight into the overall quantity of 

states.  A difference ratio between the as modeled and candidate equilibrium configurations 

provided for a metric to identify the starting or initial state for consideration.  The order in which 

states were evaluated was then established through following of solution curves from one state to 

another.  A procedure for selecting equilibrium using this order and requirement for reducing 

potential energy was proposed and confirmed plausible for cases studied.  Eigenvalues of the 

linearized governing equations were used as a secondary metric to verify stability at the chosen 

equilibrium states for each system.  The quantity and type of eigenvalues of the Jacobian for 

linearized DAEs was reported and patterns of all negative real or non-complex values were 

shown to be an indicator for stability.  Final determination of stability was made after conversion 

of these equations to ODEs in state space format such that established rules using eigenvalues 

could be applied.  Governing equations, candidate equilibrium state vectors, and eigenvalues 

from linearized ODEs were compared to those obtained using MSC ADAMS commercial 

software for further validation.  The proposed method for identifying equilibrium through path 

following of static solution curves offers an alternative to dynamic simulation that includes 

potential computational cost savings depending on system size and complexity.  Identifying 
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equilibrium in this manner is more robust than using single point solution procedures that may 

converge to a state that numerically satisfies but does not physically represent equilibrium or 

never achieves convergence, especially near limit points. 
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CHAPTER 5 

 

PARALLEL PROCESSING OF THE JACOBIAN 

 

 Demonstrating speedup for parallel code on a multi-core shared memory PC can be 

challenging in MATLAB due to underlying parallel operations that are often opaque to the user.  

These hidden operations can limit potential for improvement of serial code even for the so-called 

embarrassingly parallel applications.  One such application is the computation of the Jacobian 

matrix inherent to most nonlinear equation solvers.  Computation of this matrix represents the 

primary bottleneck in nonlinear solver speed such that commercial finite element analysis and 

multi-body-dynamics codes attempt to minimize such computations.  A timing study using 

MATLAB’s Parallel Computing Toolbox [48] was performed for numerical computation of the 

Jacobian [58].  Several approaches for implementing parallel code were investigated while only 

the single program multiple data method (MATLAB’s command spmd) using composite objects 

provided positive results.  Parallel code speedup is demonstrated but the goal of linear speedup 

through the addition of processors was not achieved due to PC architecture. 

 

5.1 INTRODUCTION 

 

Most PCs available on the market today come equipped with multi-core processors where 

cores share a common memory [44,48].  Programming on these systems is typically done via 

threading, which is a special case of an operating system process whereby threads share memory 

[44].  Multithreading or Intel’s proprietary version called hyperthreading is also commonplace 
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and allows for resource duplication within a given central processing unit core [44].  Such 

computer architecture is what enables programming languages to exploit thread-parallel 

operations.  Use of this technology where parallel operations are carried out autonomously 

without any user input or code modifications is often referred to as implicit [48] or multithreaded 

parallelism [49] where such operations are an integral part of the software.  MATLAB software 

uses multithreaded parallelism by default for many of its trigonometric and linear algebraic 

operations [48,49].  A partial list of these functions including linear equation solvers, matrix 

factorization methods, etc. can be found on the MathWorks user support website [50].  This 

default means serial versions of MATLAB code are typically running lower level parallel 

operations that users may be unaware of and have little or no control over.  These operations can 

be validated in a qualitative sense through monitoring of the CPU usage history plots using 

Windows Task Manager or a similar program.  A small serial program run using an Intel Core i7 

chip for example showed use of only a single processor, while a much larger or more 

computationally intensive program showed use of all available processors.  Although the 

Windows Task Manager showed a total of eight available processors for this chip, it should be 

noted that this is a quad-core processor with eight available threads meaning four of the 

processors are non-physical.  MATLAB still allows users to specify the number of threads being 

used through the maxNumCompThreads command [15].  Warning has, however, been issued by 

MathWorks that this feature will be removed in a future release, implying multithreading is the 

intended normal software environment. 

Even though MATLAB exploits use of multi-core processors for serial programming, 

code can potentially be further improved for speed through use of the Parallel Computing 

Toolbox [48].  This toolbox enables use of explicit parallelism where specific tasks can be 
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directed to specific processors.  Reference to underlying parallelism for serial code could not be 

found in the Parallel Computing Toolbox documentation [15] while only a single reference to 

“built-in parallelism provided by the multithreaded nature of many of the underlying MATLAB 

libraries” was found in a later version.  This lack of information may leave users unaware of 

underlying parallelism in serial code leading to high expectations for speedup of parallel 

versions.  According to a professor who specializes in computer science, a common scenario of 

first-time developers of parallel code is to find out it is actually slower than the serial version, 

which he attributes to lack of understanding of how computer hardware works, at least at a high 

level [44].  Establishing serial MATLAB or any computer code with underlying parallelism as 

the de facto standard by which to gage parallel code performance can significantly add to the 

challenge of achieving speedup.  This character can be true even for the so-called embarrassingly 

parallel applications as underlying parallelism may leave little room for code improvement.  

Users should also be aware that unlike distributed memory systems, the addition of processors 

for parallel computing on shared memory systems does not necessarily provide linear type 

improvement for speedup where doubling the number of processors doubles computational speed 

and so on. 

MATLAB users who maintain or develop their own versions of nonlinear FEA or MBD 

software codes may wish to speedup computations using the Parallel Computing Toolbox.  For 

Newton-Raphson based solvers, the major cost per iteration lies in computation of the Jacobian 

matrix [1] where it is often referred to as the tangent stiffness matrix in the FEA literature.  

Increasing the speed at which this computation is performed can have a dramatic effect on the 

overall solution time, especially for dynamic simulations where the matrix is not only computed 

during solver iterations but also at time steps during the simulation as well.  One of the solver 
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options in MBD software MSC ADAMS for example contains heuristics to help minimize the 

number of times computation of the Jacobian is performed as this represents the most time 

consuming part of a simulation [12].  Candidate algorithms for parallel computation of the 

Jacobian should be gaged for performance relative to a similar serial version.  One of the 

simplest and most widely used metrics to gage parallel performance is observed speedup being 

defined as serial execution divided by parallel execution time in terms of total elapsed or wall-

clock time [39].  This metric can be accomplished in MATLAB using the tic and toc functions.  

MATLAB also offers a function for measuring CPU time but does not recommend using it on 

systems capable of hyperthreading as the tic and toc functions are more reliable [15]. 

 

5.2 METHODS FOR COMPUTING THE JACOBIAN 

 

The Jacobian is a matrix of first-order partial derivatives resulting from the linearization 

or Taylor series expansion of a set of nonlinear equations about a known point or solution.  This 

matrix provides for a local linear model about the known point that can be used to predict nearby 

points in the nonlinear model.  Computation of this matrix is fundamental to most nonlinear 

solver algorithms and is performed on an iterative basis until a converged solution to the 

nonlinear model is found.  In commercial FEA codes such as Nastran [11] and Abaqus [9], the 

Jacobian or tangent stiffness matrix is part of a Newton-Raphson type solver.  Due to 

computational expense, effective solution strategies often minimize computation or hold the 

Jacobian constant during iterations for a modified Newton-Raphson approach [1].  Commercial 

MBD software MSC ADAMS [12] also uses a Newton-Raphson type solver for dynamics and 

only updates the Jacobian if convergence is not achieved within a finite number of iterations.  
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Development of efficient algorithms for computation of the Jacobian or derivatives in general is 

paramount to nonlinear equation solvers as this tends to dominate the total computational time 

for obtaining solutions. 

Several methods for computing derivatives needed to construct the Jacobian are 

available.  Review of popular FEA [9,11] and MBD [12] software documentation indicates that 

obtaining derivatives numerically by finite difference is still the standard approach being used.  

A goal set by developers of MSC ADAMS is to eventually eliminate the need for numerical 

differentiation [59] due to high computational cost.  By finite difference, derivatives of an 

individual function 𝑓 with respect to an independent variable 𝑥 are obtained by applying a small 

change or perturbation to 𝑥.  Variable ℎ can be used as a perturbation parameter and is added to 𝑥 to represent this change.  The resulting expression for the derivative of 𝑓(𝑥) or 𝑓ˊ(𝑥) by a 

forward finite difference is 

𝑓ˊ(𝑥) ≈ 
𝑓(𝑥+ℎ)−𝑓(𝑥)ℎ  (51) 

which represents an approximation to the derivative by the calculus definition as it does not 

include the limit expression for ℎ tending to zero.  Observe that ℎ cannot become too small due 

to limits of numerical precision on computers and possibility of dividing by a value close to zero.  

Take for example a sample function 𝑓(𝑥) =  𝑥3 + 2𝑥 + 1 with an exact or analytical derivative 

of 𝑓ˊ(𝑥) = 3𝑥2 + 2.  Using Eq. (51) for estimation of the derivative about 𝑥 = 1 and varying ℎ 

by a factor of 10 between 100and 10−20 results in Fig. 31 for the percent error of Eq. (51) with 

respect to the analytical derivative.  Results were obtained using MATLAB with double 

precision representation of floating point numerical values.  Error for this case was minimized 

for ℎ = 10−8 and the procedure broke down or failed for ℎ ≤ 10−16 where 𝑓(𝑥) and 𝑓(𝑥 + ℎ) 
became numerically equivalent after the 15th decimal place or a maximum of 16 significant 
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digits.  The numerator in Eq. (51) became zero for these instances resulting in 100% error.  

Additional information on this method including error can be found in Ref. [60].   

 

Figure 31.  Percent error vs. parameter ℎ for given function 𝑓 

 

An alternative to obtaining derivatives numerically by finite difference is symbolic 

differentiation.  In this case, the symbolic expression for 𝑓(𝑥) would be differentiated using rules 

of calculus to obtain a new symbolic expression for 𝑓ˊ(𝑥).  Numerical values of 𝑥 can then be 

substituted into 𝑓ˊ(𝑥) for specific values of the derivative with an accuracy of 16 significant 

digits when using double precision.  The result for 𝑓ˊ(1) in this case would be 5 followed by a 

decimal with fifteen zeros.  The value obtained by finite difference, on the other hand, is 

4.999999969612644, which exhibits error in the eighth decimal place for ℎ = 10−8.  Although 

symbolic differentiation can be used to obtain derivatives in an exact sense, computational 

overhead for manipulating symbolic expressions using calculus based rules would limit this 

procedure to small problems to avoid excess solve time.  Further, some functions may lack 

analytic description being modeled by tabular data requiring table lookup or interpolation 
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procedures which cannot be differentiated symbolically.  A comprehensive list of computer 

programs capable of manipulating symbolic math expressions including their capabilities can be 

found at https://en.wikipedia.org/wiki/List_of_computer_algebra_systems. 

A third alternative to obtaining derivatives is automatic differentiation.  The algorithm for 

computing derivatives in this case uses existing computer programs or subroutines for 

computation of a function 𝑓 and supplements them with a new routine for computation of 𝑓ˊ.  
Derivatives are not subject to approximation error and are produced in an exact sense similar to 

the symbolic method.  Automatic differentiation seems to be gaining favor based on the amount 

of research and computer codes being generated.  Developing efficient, robust algorithms for 

large-scale applications has been identified as a research challenge by a developer using 

MATLAB [61] and favorable timing results in comparison to finite difference have been 

obtained for a specific class of problem by developers using C++ [62].   MSC did a study for 

integrating ADIFOR [63] into the FORTRAN version of ADAMS but it was not stated to having 

been adopted [12] implying computational overhead exceeded that of finite difference for this 

general purpose commercial software.  A community portal with information on software, 

conferences, and workshops dedicated to the subject matter can be found at 

http://www.autodiff.org.   

Calculation of derivatives for components of the Jacobian matrix were made using the 

finite difference method in both serial and parallel code versions for this study.  This decision 

was based on ease of implementing various parallel versions for evaluating speedup and 

likelihood it remains the most practical approach for computing derivatives in FEA and MBD 

programs.  Equations for a repeating link or chain system were chosen for computing the 

Jacobian due to scalability and a specific reference in the LSOLVER section of the MSC 
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ADAMS solver manual [12].  Better performance is claimed when using an available sparse 

matrix solver with parallel capability for systems of 5000 degrees-of-freedom and larger with 

exception to some models like simply-connected long chains.  This trend set a goal for positive 

margin on speedup for linkage systems under 5000 DOF for parallel computation of the Jacobian 

using MATLAB code.  Although numerical accuracy of derivatives in the Jacobian may be of 

concern, highly accurate results for Newton-Raphson type solvers are not required.  The 

modified Newton-Raphson method, for example, may hold the Jacobian constant, without any 

updates during iterations, and the BFGS method [16-19] avoids explicit computation of the 

Jacobian by only computing an approximate update during solver iterations. 

 

5.3 EQUATION THEORY AND BACKGROUND 

 

Equations for the linkage system used in this study were derived using Lagrange’s 

method [52].  This derivation results in a set of nonlinear DAEs used for computation of the 

Jacobian matrix.  Equations can be represented in compact form where 𝒖 is understood to 

contain a mix of space and time dependent variables as represented by Eq. (1) and linearized 

about a known state 𝒖𝑖 using a first-order Taylor series expansion for solution by the Newton-

Raphson method. 𝒇(𝒖) ≈ 𝒇(𝒖𝑖) + (𝜕𝒇𝜕𝒖)𝑖 (𝒖 − 𝒖𝑖) = 𝟎 (52) 

Bolded terms in Eq. (52) are used to represent vectors where 𝒖 is the vector of unknown 

variables and 𝒇(𝒖) is the system of DAEs.  Vector 𝒖 is often referred to as the state vector and 

contains variables for position, velocity, and constraint forces for each link in the system.  The 
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derivative term in Eq. (52) is the Jacobian with the following expanded or matrix format for 𝑁 

unknown variables or DOF. 

(𝜕𝒇𝜕𝒖)𝑖 = [  
 𝜕𝑓1𝜕𝑢1 ⋯ 𝜕𝑓1𝜕𝑢𝑁⋮ ⋱ ⋮𝜕𝑓𝑁𝜕𝑢1 ⋯ 𝜕𝑓𝑁𝜕𝑢𝑁]  

 
𝑖
 (53) 

Eq. (53) shows that a system containing 𝑁-DOF will have 𝑁𝑥𝑁 or 𝑁2 derivatives in the 

Jacobian. Calculation of every individual derivative may not be required, however, as individual 

equations in Eq. (52) can be organized in a manner such that the Jacobian will have a known 

pattern.  This organization is true for mechanical systems in general and sparsity or zero-entries 

in the Jacobian resulting from linearization of governing DAEs can be taken advantage of as 

well.  Details on the derivation of equations using this approach for a single link or pendulum 

including pattern forming of the Jacobian can be found in Ref. [53].  The single link has eight 

unknown variables for this case as motion is constrained to a plane.  A similar planar constraint 

was used for the multi-link system in this study where total DOF is obtained by multiplying the 

number of links by eight.  Variables or DOF for each link consist of two for position, one for 

orientation, their corresponding derivatives, and two for the constraint forces.   

Governing equations for the multi-link systems were produced using a MATLAB 

function or subroutine based on a repeating pattern for systems of two links and greater.  Serial 

and parallel subroutines with options for sparse versus dense formulations were then developed 

for timing of numerical computation of the Jacobian for a varying number of links.  Validation of 

computer code was performed for a two link system under the influence of gravity using a 

previously developed nonlinear software suite capable of simulating dynamic systems [51].  

Results for the horizontal constraint force versus time for the grounded connection with links 
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initially configured as an upside down “V” are shown in Fig. 32.  Blue dots on the figure were 

found using MATLAB and the red line was found using MSC ADAMS.   

 

Figure 32.  Constraint force vs. time for double link system 

 

The 16x16 Jacobian was small enough in this case where hand or symbolic computation 

of derivatives could be performed with reasonable effort.  A function with expressions for 

derivative terms was then developed for computation of the Jacobian in an exact sense for 

comparison to a serial numerical version in terms of solution time for the two second simulation 

shown in Fig. 32.  The total solution or wall time for the MATLAB simulation was 0.45 seconds 

using the explicit definition of the Jacobian versus a 5 second solution time for computation of 

derivatives numerically by finite difference.  The time step used for the simulation was 0.001 

seconds and convergence was achieved within 3 to 4 iterations per time step using a Newton-

Raphson type solver where the Jacobian was updated at every iteration.  The over tenfold 

increase in solution time between the two simulations demonstrates the high cost associated with 

numerical computation of the Jacobian.  Switching to a modified Newton-Raphson method 
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where the Jacobian was calculated numerically only once per time step and held constant 

increased iterations for convergence up to 9 in some instances but reduced the solution time to 

1.67 seconds.  This behavior further reinforces that computation of the Jacobian should be 

minimized to avoid excessive solution times in general.  Note that the explicit definition of the 

Jacobian provided for an idealized case for timing results.  However, such an approach would 

not be practical for large systems and would require use of a numerical procedure. 

 

5.4 SERIAL CODE IMPLEMENTATION 

 

A simplified version of MATLAB code used to numerically compute the Jacobian matrix 

in a serial fashion is shown in Fig. 33.  Function ser_jacobi is defined to output Jacobian matrix 𝑱 using state 𝒖𝑖 as input.  Code is “vectorized” in the sense that the matrix is computed a column 

at a time with a single for-loop verses element-wise using a double for-loop.  Column entities in 

Eq. (53) show equations 𝒇 being differentiated with respect to a given element of vector 𝒖 such 

that perturbations applied to specific elements of 𝒖 can be used to compute entire columns of 𝑱.  
Vectorization is a key concept in MATLAB programming as it simplifies code, allows users to 

take advantage of underlying subroutines inherent to the programming language, and will likely 

perform computations in the most efficient manner.  The column-wise implementation of Eq. 

(51) is shown on row twelve of Fig. 33.  The (: , 𝑗) operator is used to designate all row entities 

of the 𝑗𝑡ℎ column in 𝑱 being a difference in perturbed vector 𝒇(𝒖𝑝) and original vector 𝒇(𝒖𝑖) 
with all entities being divided by ℎ.  Additional information on code vectorization can be found 

in the Vectorization section of the MATLAB user documentation [15].    
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Figure 33.  Serial Jacobian computation using MATLAB 

 

Code in Fig. 33 is specific to computation of the full Jacobian matrix or all matrix entities 

and storing them in a dense format that includes any zero entities.  Such computation can be 

expensive for large systems and a significant reduction in computational cost can be achieved by 

taking advantage of known patterns and sparsity.  Through proper arrangement of state variables 

in 𝒖, the Jacobian for the multi-link systems has the following block matrix format consistent 

with the general format given in Ref. [53].  Zeros sub-matrices are due to Lagrange’s method 

being used to derive governing equations, which results in large sets of equations in redundant 

coordinates and considerable sparsity for the Jacobian. 

𝑱 = 

[  
   
  1𝑑𝑡𝑴 𝟎 𝟎 𝟎 𝚽𝑝𝑇𝟎 1𝑑𝑡 𝑰𝑪𝑴 𝟎 [𝚽𝜀𝑇𝚲]𝜀 𝚽𝜀𝑇−𝑰 𝟎 1𝑑𝑡 𝑰 𝟎 𝟎𝟎 −𝑰 𝟎 1𝑑𝑡 𝑰 𝟎𝟎 𝟎 𝚽𝑝 𝚽𝜀 𝟎 ]  

   
  
 (54) 

Components of 𝑱 include diagonal sub-matrices 𝑴, 𝑰𝑪𝑴, and 𝑰 being mass, inertia, and 

identity matrices respectively.  Term 𝑑𝑡 applied to these matrices is the time step or increment 

used between states for dynamic simulation.  Constraint equations are stored in vector 𝚽 where 
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 𝚽 = 𝟎 and subscripts 𝑝 and 𝜀 are used to denote partial derivatives with respect to position and 

orientation variables respectively.  Finally, the constraint forces or Lagrange multipliers are 

stored in column vector 𝚲.  Sub-matrices for mass, inertia and identity do not change for constant 𝑑𝑡 or within a given time step and are invariant.  Standalone identity matrices are invariant by 

definition.  This invariance leaves only sub-matrices containing 𝚽 for numerical computation, 

which dramatically reduces the amount of computational overhead and size of the for-loop in 

Fig. 33.  A more efficient strategy for computation of the Jacobian would now involve pre-

allocation and construction of a sparse matrix with invariant terms followed by computation of 

the 𝚽 sub-matrix blocks in the last row, and the row two, column four block locations of Eq. 

(54).  Previously calculated 𝚽 blocks in the last row can then be transposed and inserted into the 

last column of Eq. (54). 

The need for sparse versus dense format of the Jacobian is driven by both computer 

memory for storage and computational cost of factorization.  The Jacobian must be factorized 

each time a new version is computed as it is part of a linear system being solved during iterations 

of Newton-Raphson based solvers.  Eliminating the storage of zeros and the processing of zero 

entities in sparse computational algorithms can have dramatic effects on efficiency and become 

more apparent as systems increase in size.  Table 13 for example shows the wall time needed to 

solve a sample linear system Δ𝒖 = 𝑱−1𝑹 where 𝑱 is stored in both sparse and dense formats for 

timing comparison.   Variable Δ𝒖 denotes an incremental change in state vector 𝒖, 𝑹 is a residual 

vector set to all ones, and Jacobian 𝑱 has been factorized into lower and upper triangular 

elements versus taking the inverse for solution.  The speed factor in Table 13 is a multiplier of 

how many times faster the sparse solver is compared to the dense, and the non-zero (NZ) ratio is 

the number of non-zero terms divided by the total or 𝑁2 number of terms in 𝑱.  Numerical values 
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in the table indicate that sparsity is significant and large performance gains in solution time can 

be expected by using the sparse matrix format and solver.  A detailed overview of sparse 

matrices and sparse matrix operations in MATLAB can be found in Ref. [64]. 

 

Table 13 

Solution times using sparse and dense Jacobian (sec) 

Links DOF sparse dense factor NZ ratio 

200 1600 0.003 0.08 27.64 2.0E-03 

400 3200 0.006 0.56 90.21 1.0E-03 

600 4800 0.009 1.40 148.57 6.8E-04 

800 6400 0.012 3.15 252.23 5.1E-04 

1000 8000 0.016 5.87 372.81 4.1E-04 

1200 9600 0.019 9.84 516.66 3.4E-04 

1400 11200 0.023 15.06 664.97 2.9E-04 

1600 12800 0.027 23.10 853.97 2.5E-04 

1800 14400 0.031 32.24 1052.13 2.3E-04 

2000 16000 0.034 43.29 1262.09 2.0E-04 

 

5.5 PARALLEL CODE IMPLEMENTATION 

 

Parallel processing of computational algorithms in MATLAB can be implemented using 

either parallel for-loops, parfor, or by spmd.  Parallel for-loops work only for the simplest of 

algorithms and each loop must be totally independent from all others.  The perturbed vector 𝒖𝑝 

inside the for-loop shown in Fig. 33 is updated element-wise over the course of loop iterations 

such that a parallel for-loop cannot be used for computing the Jacobian in this manner.  The 

single program multiple data or spmd option, however, is more versatile and allows for specific 

tasks to be assigned to specific processors.  Once a parallel job is started in MATLAB, one 

processor is assigned the role of client while the remaining processors are assigned the role of 

workers.  Computation of the Jacobian can be accomplished by dividing the for-loop in Fig. 33 

over a specified number of processors using spmd.  This specification requires creation of an 
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indexing array used to identify the start and finish column identification numbers based on 

desired matrix partitions.  However, changes to the serial code are minimal making this method 

easy to implement. 

The Jacobian can be stored using either distributed arrays, codistributed arrays or 

composite objects when using the spmd option.  Arrays are considered as distributed or 

codistributed as viewed from the perspective of the client or worker processors.  Distributed 

arrays are created on the client where codistributed arrays are created on the workers themselves.  

Positive timing results for writing and updating elements of these type arrays could not be 

obtained.  This lack of improvement may be due to the client-worker relation where writing new 

elements to workers causes a similar update to be performed on the client.  However, explicit 

reference to how writing of elements to these arrays is performed could not be found in 

documentation and users do not have access to the underlying C-code used to write MATLAB 

software.  Composite objects, on the other hand, produced positive results for computing the 

Jacobian in parallel.  These objects exist on workers and have the same variable name on all 

workers but store different data.  The downside of composite objects is that they must be 

converted back into a single matrix for use in computations in their entirety.  Parallel 

computation of the Jacobian using composites for example will be stored in independent groups 

of columns on workers.  If the Jacobian is then needed for use in a linear system 𝑱Δ𝒖 = 𝑹, it will 

need to be converted into matrix form. 

A parallel version of the for-loop used to calculate the Jacobian in Fig. 33 is shown in 

Fig. 34.  Code is again specific to computation of the full Jacobian matrix in dense form.  This 

instruction provides for the most compact, readable version of code to demonstrate spmd 

parallelization.  Computation of the index array, index, for parsing of the Jacobian is not shown 
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on the figure.  Variable 𝑤 is used to designate specific worker or processor identifications.  The 

labindex function is used to distribute tasks being calculation of specific columns of the Jacobian 

to specific workers.  Column identification numbers all start with one for composite objects on 

workers and an additional variable 𝑘 is used to distinguish between column identification 

numbers for the entire Jacobian and sections being stored in composite objects.  Computation of 

the 𝚽 blocks only would require additional indexing for start and finish row identification 

numbers versus processing of all rows as shown in Fig. 34.  Final assembly of the Jacobian using 

dense or sparse format would then be carried out after the spmd block of code is complete. 

 

Figure 34.  Parallel Jacobian computation using MATLAB 

 

5.6 CODE TIMING RESULTS 

 

The timing of computer code was accomplished using the 2015b version of MATLAB 

software and is reported using wall time.  The tic and toc functions in MATLAB behave similar 

to a stopwatch where toc provides for the total elapsed or wall time since the last initiation of tic.  
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The cputime function offers an alternative but was not used due to potential for misleading 

results.  Additional explanation of the two timing methods can be found in the Measure 

Performance of Your Program section of the MATLAB user documentation [15].  Here, the tic 

and toc functions are stated to be more reliable than cputime and significant difference in 

reported times can occur due to hyperthreading where instructions are processed in parallel on a 

single processor.  Wall time may be considered a more conservative approach for characterizing 

performance of computer code as it includes all communications overhead associated with 

parallel operations. 

Wall timing results for processing of the Jacobian are shown in Tables 14 through 16.  

Each table includes a timing comparison of serial to parallel code for a given number of links 

using a varying number of processors (NP).  The size of the Jacobian matrix or number of rows 

and columns is equal to the DOF number.  Wall time is reported in seconds where an associated 

speedup factor defined as the serial divided by parallel time is used to indicate performance.  

Results were obtained using a Windows 7 laptop computer with an Intel i7-3720QM processor 

and available 16 GB RAM (gigabytes of random access memory).  A maximum of 8 threads or 

processors were available to MATLAB as workers and timing is initially reported using 

maximum resources.  This decision was based on identifying the smallest DOF system with 

positive performance or a speedup factor greater than one with maximum parallel 

communications overhead.   The number of links was then varied in an increasing manner until 

the speedup factor no longer demonstrated significant gains in performance.  At this point, use of 

computational resources is considered maximized with no additional bandwidth available for 

further performance gains.  Lines across the center of tables are used to denote this breakpoint.  



www.manaraa.com

111 
 

The number of processors was then decreased while holding the DOF constant showing an 

expected decrease in the speedup factor due to the reduction of computational resources.   

Table 14 considers computation of all entities or the full Jacobian matrix using composite 

objects only and saves them using dense format; this includes zero terms.  Positive performance 

with a speedup factor of 1.2 occurs for a 200 link, 1600 DOF system.  As the number of DOF 

continues to increase, performance is seen to level off at 8000 DOF with a maximum speedup 

factor of 3.8. Note that linear speedup could not be obtained as the addition of processors does 

not come with additional memory.  Decreasing the number of processors while holding DOF 

constant at 8000, then provides for a minimum speedup factor of 1.7 when using only two 

processors.  Computations used for the Jacobian in Table 15 were similar to those in Table 14 

with the exception of inclusion of time to convert the composite object to a double precision 

matrix.  The conversion is simple but cost is significant as seen by the overall reduction in 

speedup factor when compared with corresponding values in Table 14.  Positive margin for 

speedup now requires a 3200 DOF versus 1600 DOF system and performance levels out at 6400 

DOF versus 8000 DOF when using 8 processors.   

Table 16 provides results for a pre-allocated sparse Jacobian with invariant sub-matrices 

and computation of the constraints or blocks containing 𝚽 only.  Composite objects are used for 

the constraint blocks and time to convert to sparse double precision format is included as well.  

Gains for parallel performance are seen for systems up to 6400 DOF.  Wall time is the lowest as 

compared to other methods and use of sparse format will provide a significant speed advantage 

during a linear solution phase as shown in Table 13.  This procedure for computing the Jacobian 

would be considered the most practical and recommended as it takes advantage of known 



www.manaraa.com

112 
 

patterns, sparsity, and conversion to double precision matrix format for use in solving a linear 

system. 

 

Table 14 

Calculation of full Jacobian, dense composite format (sec) 

Links DOF NP serial parallel factor 

200 1600 8 0.6 0.5 1.2 

400 3200 8 3.3 1.6 2.1 

600 4800 8 9.7 3.1 3.1 

800 6400 8 18.6 5.3 3.5 

1000 8000 8 30.5 8.1 3.8 

1200 9600 8 45.3 12.0 3.8 

1000 8000 8 30.5 8.1 3.8 

1000 8000 6 30.0 9.1 3.3 

1000 8000 4 30.2 11.5 2.6 

1000 8000 2 30.2 18.0 1.7 

 

Table 15 

Calculation of full Jacobian, dense matrix format (sec) 

Links DOF NP serial parallel factor 

200 1600 8 0.6 0.8 0.7 

400 3200 8 3.2 2.5 1.3 

600 4800 8 9.9 5.3 1.9 

800 6400 8 19.0 9.2 2.1 

1000 8000 8 32.3 15.5 2.1 

1000 8000 8 32.3 15.5 2.1 

1000 8000 6 32.3 16.3 2.0 

1000 8000 4 32.2 17.7 1.8 

1000 8000 2 32.4 24.8 1.3 
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Table 16 

Calculation of block Jacobian, sparse matrix format (sec) 

Links DOF NP serial parallel factor 

200 1600 8 0.2 0.4 0.6 

400 3200 8 1.3 0.8 1.6 

600 4800 8 3.9 1.6 2.4 

800 6400 8 7.8 2.7 2.9 

1000 8000 8 11.8 4.0 2.9 

1000 8000 8 11.8 4.0 2.9 

1000 8000 6 11.3 4.9 2.3 

1000 8000 4 11.3 5.9 1.9 

1000 8000 2 11.4 8.4 1.4 

 

5.7 CONCLUSIONS 

 

Successful development of explicitly defined parallel code for computing the Jacobian 

matrix was completed using MATLAB.  The spmd method using composite objects was found to 

be the only procedure that produced positive results while use of the sparse as compared to dense 

format provided for dramatic speed improvements for solutions to linear systems.  Speedup of 

parallel code was demonstrated on a shared memory PC and compared to serial code with 

underlying parallel operations using wall time.  This comparison provided for a most 

conservative estimate for parallel code speedup as underlying parallel operations are integral to 

MATLAB and wall time includes parallel communications overhead.  Linear type parallel 

speedup could not be achieved using the chosen performance metrics and computer architecture, 

which are quite common and may represent a typical MATLAB environment.  Performance 

gains were demonstrated, however, and an approximate three times speedup for the 

recommended sparse format, double precision Jacobian matrix was achieved.  The goal of 

demonstrating speedup for systems under 5000 DOF was also achieved being most applicable to 

smaller scale FEA or MBD problems that can run efficiently on PCs.  MATLAB users running 
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nonlinear FEA and MBD codes on PCs should expect significant performance gains when using 

sparse matrix operations and marginal parallel performance gains for systems on the order of 

3200 DOF and greater. 
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CHAPTER 6 

 

SPACECRAFT RELATIVE ORBIT DETERMINATION CASE STUDY 

 

 A numerical path following procedure using an arc-length solver is applied to nonlinear 

algebraic equations sets used to determine initial conditions for spacecraft relative motion in 

planar and space or three-dimensional orbits.  Multiple roots or solutions to such equations are 

known to exist based on previous work where MATLAB’s fsolve routine was used to identify 

solutions.  Previous work is revisited and two additional roots for the planar orbit system are 

found.  Parameterized solution curves produced by the arc-length solver provide for a graphical 

representation of the overall solution and increase likelihood that all roots are found.  

Identification of all roots is critical as only one represents initial conditions for an orbit of non-

zero velocity and minimum energy. 

 

6.1 INTRODUCTION 

 

 Orbit determination procedures are used to predict relative motion of one moving body 

with respect to another through use of a series of measurements and mathematical models [65].  

Recent work involves use of Volterra multi-dimensional convolution theory for prediction of this 

motion [66].  In this reference, one body is designated as the chief while the other is designated 

as a deputy.  A series of measurements are performed that locate the deputy relative to the chief 

at discrete times and are used to construct a set of nonlinear measurement equations.  These 

equations are coupled quadratic polynomials of the general form 
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 𝒇𝑖(𝑥0, 𝑦0, 𝑧0, �̇�0, �̇�0, �̇�0) = 𝟎 (55) 𝒈𝑖(𝑥0, 𝑦0, 𝑧0, �̇�0, �̇�0, �̇�0) = 𝟎 

where integer 𝑖 provides a unique identifier for individual equations in the set.   Unknown 

variables represent initial conditions for position (𝑥0, 𝑦0, 𝑧0 ) and velocity (�̇�0, �̇�0, �̇�0) 
respectively.  Specific details regarding structure of equations can be found in Ref. [66] where 

constants used to define the equations include the Earth standard gravitational parameter 𝜇 = 3.986𝑥105 𝑘𝑚3/𝑠2 and chief mean radius 𝑅𝐶  =  7100 𝑘𝑚. 

Solving of the measurement equations shown in Eq. (55) provides for the initial 

conditions needed to construct a set of trajectory equations used to determine relative motion 

between the chief and deputy.  Trajectory equations are also defined in Ref. [66].  As these 

equations depend entirely on the set of initial conditions used, choosing the right set becomes 

critical.  When multiple roots or solutions exist, this choice is based on the set of initial 

conditions that produces an orbit of non-zero and minimum relative specific energy (𝑒).  
Equations used to calculate energy are based on the relative motion dynamics and reference 

frames defined in Ref. [67]. 𝑒 = (𝑉𝐷2 − 𝑉𝐶2)/2 − 𝜇(1/𝑅𝐷 − 1/𝑅𝐶) (56) 

𝑅𝐷 = √(𝑅𝐶 + 𝑥0)2 + 𝑦02 + 𝑧02 

𝑉𝐷 = √(�̇�0 − 𝑛𝑦0)2 + (𝑉𝐶 + �̇�0 + 𝑛𝑥0)2 + �̇�02 

𝑉𝐶 = √𝜇/𝑅𝐶 

𝑛 = √𝜇/𝑅𝐶3 
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Subscripts 𝐶 and 𝐷 designate chief and deputy respectively where 𝑅 is radius, 𝑉 is velocity and 𝑛 is the chief mean motion.  This energy calculation was not used in Ref. [66] as found roots 

produced relative orbits that were of obvious higher energy as compared to the expected 

solution.  This excess energy trait was not the case for one of the additional found roots 

identified when using solution curves making the need to compute and assess energy in a 

systematic process necessary. 

 In addition to using arc-length solvers for identifying roots, stopping or termination 

criteria was also defined in the event solution curves continued on a path towards infinity.  These 

curves are best plotted by selecting any or all of the independent variables and plotting them with 

respect to the common scalar solution 𝜆 on the vertical axis.  Solution curves that do not close or 

remain open and increasing towards infinity need to be terminated at some point and designated 

as not turning back towards the 𝜆 = 0 axis for an additional root.  This termination can be based 

on asymptotic or linear type behavior in the solution that may develop for continuously 

increasing or decreasing 𝜆.  Trends in solution curves towards vertical, horizontal, or oblique 

type asymptotes can be identified in a qualitative sense as viewed on plots within a given 

sectional view of hyperspace.  Although path following of the solution could be stopped based 

on observation, more definitive criteria based on change in slope was used to terminate the 

procedure.  Due to the multi-degree-of-freedom nature and coupling between equations for given 

systems, the behavior of all independent variables should be considered simultaneously when 

evaluating for asymptotes. 

 One of the simplest methods for identifying asymptotic behavior involves monitoring of 

the Jacobian or tangent stiffness matrix 𝑲 for change at selected 𝜆 locations or 𝛥𝜆 increments 

along a given solution curve.  Row vectors 𝒌𝑖𝒋 of the Jacobian matrix represent change in slope 
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with respect to independent variables for individual equations or representative hypersurfaces 

contained in the nonlinear system.  Subscript 𝑖 designates the row number where bolded 𝒋 
designates all column entities with a given row.  As equations are coupled and share a common 

solution, it may be possible to evaluate change using only a single row; however, all rows were 

chosen for evaluation and provided consistent results.  Linear or asymptotic behavior for large 

and continually increasing or decreasing 𝜆 is assumed as change between individual rows of the 

Jacobian become continually less.  A metric based on difference ratio denoted by 𝑑𝑖𝑓𝑓 can be 

established where both a sampling increment 𝛥𝜆 and a minimum difference used to designate 

asymptotic behavior will need to be specified. 𝑑𝑖𝑓𝑓 = ‖[𝒌𝑖𝒋]𝜆+𝛥𝜆 − [𝒌𝑖𝒋]𝜆‖/‖[𝒌𝑖𝒋]𝜆‖ (57) 

Subscripts located after row vector brackets in Eq. (57) are used to indicate specific points on the 

solution curve for values of 𝜆.  If the relation between two points 𝜆 and 𝜆 + 𝛥𝜆 on a solution 

curve share the same slope or became perfectly linear, 𝑑𝑖𝑓𝑓 would be equal to zero.   A zero 

value for 𝑑𝑖𝑓𝑓 may not be practical to achieve or may require excessive solver iterations during 

path following and need only be considered small for determination of asymptotic behavior. 

 

6.2 PLANAR ORBIT 

 

 Two-dimensional relative motion between two bodies occurs when the deputy's motion 

lies in the orbital plane of the chief defined by the xy axes of the local-vertical local-horizontal 

(LVLH) reference frame attached to the chief.  In the planar case, Eq. (55) represents four 

quadratic homogeneous polynomial equations in terms of four unknowns (𝑥0, 𝑦0) and (�̇�0, �̇�0).  

Specific orbital conditions and the four measurement times are documented in Ref. [66].  
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Solution curves for the planar orbit are shown in Figs. 35 through 38 for solution curve 1 and 

Figs. 39 through 42 for solution curve 2.  Roots or candidate solutions for deputy initial orbit 

conditions are designated using capital letters A through F on curves where they cross the 𝜆 = 0 

axis.  Although plotting of a single variable only is required for a pictorial of the solution in a 

given sectional view of hyperspace, all four variables were chosen so that differences between 

plots could be observed.  While some curves self-intersect, others do not and provide for more 

obvious separation between roots on plots.  The order in which roots occur when following a 

given curve is consistent, but order does not matter for this particular application as the objective 

lies in finding the root, which minimizes relative specific energy.  An all zero or trivial solution 

where the deputy coincides with the chief exists but is rejected based on the resulting zero energy 

condition.  Specific values for roots obtained using solution curve 1 and their corresponding 

relative specific energy values are in Tables 17 and 18.  Similar values for solution curve 2 are in 

Tables 19 and 20.  Using these tables, state E is chosen based on minimum energy while trivial 

state D and other higher energy states are rejected. 
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Figure 35.  Solution curve 1 for deputy 𝑥0 

 

 

Figure 36.  Solution curve 1 for deputy 𝑦0 
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Figure 37.  Solution curve 1 for deputy �̇�0 

 

 

Figure 38.  Solution curve 1 for deputy �̇�0 
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Table 17 

Candidate states, curve 1 

Variable State A State B State C 𝑥0(𝑘𝑚) -1996 1561 1733 𝑦0(𝑘𝑚) -2916 7902 4890 �̇�0(𝑘𝑚/𝑠) 1.195 1.380 1.167 �̇�0(𝑘𝑚/𝑠) 3.758 -3.431 -3.741 

 

Table 18 

Relative specific energy (𝑘𝑚2/𝑠2), curve 1 

State A State B State C 

11.199 34.585 12.134 

 

 

Figure 39.  Solution curve 2 for deputy 𝑥0 
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Figure 40.  Solution curve 2 for deputy 𝑦0 

 

 

Figure 41.  Solution curve 2 for deputy �̇�0 
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Figure 42.  Solution curve 2 for deputy �̇�0 

 

Table 19 

Candidate states, curve 2* 

Variable State D State E State F 𝑥0(𝑘𝑚) 0 0.200 18.25 𝑦0(𝑘𝑚) 0 0.000 24.81 �̇�0(𝑘𝑚/𝑠) 0 0.002 -0.003 �̇�0(𝑘𝑚/𝑠) 0 0.020 0.007 

* Determined orbit highlighted red 

 

Table 20 

Relative specific energy (𝑘𝑚2/𝑠2), curve 2* 

State D State E State F 

0 0.153 0.341 

* Determined orbit highlighted red 

 

Extended plots for solution curve 1 are shown in Figs. 43 through 46 and Figs. 47 

through 50 for solution curve 2.  Values for 𝜆 exceed ±104 such that development of linear or 

F E 

D 
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asymptotic type behavior can be observed.  At these large values for 𝜆, the common scalar 

solution to all equations is indicative of continually increasing towards infinity and not turning 

back towards the 𝜆 = 0 axis for possibility of an additional root.  In these sectional views of 

hyperspace, asymptotes primarily appear as oblique with the exception of the 𝑥0 and �̇�0 solution 

curves, which appear to approach vertical asymptotes in the increasing – 𝜆 direction.  The likely 

presence of asymptotes indicates there are an infinite number of non-zero 𝜆 solutions to this 

system with only a finite number of 𝜆 = 0 roots for the given solution curves.  For this particular 

system, two solution curves containing three roots each were found. 

 

 

Figure 43.  Extended solution curve 1 for deputy 𝑥0 
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Figure 44.  Extended solution curve 1 for deputy 𝑦0 

 

 

Figure 45.  Extended solution curve 1 for deputy �̇�0 
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Figure 46.  Extended solution curve 1 for deputy �̇�0 

 

 

Figure 47.  Extended solution curve 2 for deputy 𝑥0 
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Figure 48.  Extended solution curve 2 for deputy 𝑦0 

 

 

Figure 49.  Extended solution curve 2 for deputy �̇�0 

 



www.manaraa.com

129 
 

 

Figure 50.  Extended solution curve 2 for deputy �̇�0 

 

 Plots of difference ratios using Eq. (57) for rows in the Jacobian matrix are shown in 

Figs. 51 through 54.  Computations begin at the 𝜆 = ±500 axes, continue toward the 𝜆 = ±2 ×104 axes, and cover what appears to be asymptotic regions of the extended solution curve plots.  

Curves were sampled at locations that provided for a 𝛥𝜆 increment of approximately 100 for 

construction of plots. 
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Figure 51.  Solution curve 1 difference ratio for positive 𝜆 

 

 

Figure 52.  Solution curve 1 difference ratio for negative 𝜆 
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Figure 53.  Solution curve 2 difference ratio for positive 𝜆 

 

 

Figure 54.  Solution curve 2 difference ratio for negative 𝜆 
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 Tendency for the difference ratio to approach zero for increasing 𝜆 is apparent on Figs. 

51 through 54.  The procedure was terminated when this ratio or 𝑑𝑖𝑓𝑓 became less than 0.005 or 

half of a percent when using the specified 𝛥𝜆 increment.  Plots could be made to appear more 

dramatic or have a sharper turning radius near the vertical 𝑑𝑖𝑓𝑓 = 0 axis if the process were 

started closer to the 𝜆 = 0 axis where changes in slope are more significant.  Although this 

region of the plot could be included, evaluation of changes in the Jacobian for asymptotes is 

intended for the more linear portions of the solution curves with large and continually increasing 

or decreasing 𝜆.  Decreasing the value of 𝛥𝜆 will also have an effect on the magnitude of 𝑑𝑖𝑓𝑓.  

Using curve 2 for example, 𝑑𝑖𝑓𝑓 can be decreased by nearly an order of magnitude or 10X 

through a 5X reduction in the 𝛥𝜆 sampling increment, which essentially shifts the curve left 

towards the 𝑑𝑖𝑓𝑓 = 0 axis.  Best practice in evaluation of asymptotes should therefore involve 

selection of a 𝛥𝜆 increment that represents a significant change in the solution and avoids 

approaching the limiting case of a zero increment with coincident points or zero difference.  In 

Figs. 51 through 54, the beginning of 𝑑𝑖𝑓𝑓 to decrease in a more gradual manner towards zero 

can be seen in the |𝜆| < 1 x 104 range.  The selected 𝛥𝜆 increment used to construct figures 

represents a 1% change between solution points in this region, provides for sufficient separation 

between points, and identifies relatively small changes in the Jacobian or the development of 

linear type behavior.  Continued path following of the solution for increasing or decreasing 𝜆 

could be performed to further strengthen the argument of linear behavior, but this would come at 

the expense of increased computations for additional points on the solution curve. 
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6.3 SPACE ORBIT 

 

 Three-dimensional relative motion between the two bodies occurs when the deputy's 

motion lies off of the chief orbital plane due to additional position and velocity components 𝑧 

and �̇� in the LVLH reference frame.  Note the deputy trajectory frequently crosses or intersects 

this plane momentarily as it orbits "above" and "below" the chief.  In this space case, Eq. (55) 

represents six quadratic homogeneous polynomial measurement equations for the six unknowns 

(𝑥0, 𝑦0, 𝑧0) and (�̇�0, �̇�0, �̇�0).  Specific orbital conditions and measurement times are documented 

in Ref. [68].  A single solution curve for the general orbit case is shown in Figs. 55 through 60.  

A total of seven roots or candidate solutions for deputy initial orbit conditions are designated 

using capital letters A through G on the figures.  Specific values for roots and their 

corresponding relative specific energy values are shown in Tables 21 and 22.  Similar to the 

planar orbit, an all zero or trivial solution exists and is rejected based on having zero energy.  

Using these tables, state A is chosen based on minimum energy while trivial state C and other 

higher energy states are rejected.  While state variables 𝑥0, 𝑦0 and their derivatives for the 

nontrivial, lowest energy state appear somewhat similar for the planar and space orbits, energy 

for the general three-dimensional orbit is approximately an order of magnitude or ten times less 

than the two-dimensional case.  Inclusion of the 𝑧0 variable and its derivative is also shown to 

produce states of much higher energy as compared to the planar orbit. 
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Figure 55.  Solution curve for deputy 𝑥0 

 

 

Figure 56.  Solution curve for deputy 𝑦0 
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Figure 57.  Solution curve for deputy 𝑧0 

 

 

Figure 58.  Solution curve for deputy �̇�0 
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Figure 59.  Solution curve for deputy �̇�0 

 

 

Figure 60.  Solution curve for deputy �̇�0 
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Table 21 

Candidate states* 

Variable State A State B State C State D State E State F State G 𝑥0(𝑘𝑚) 0.200 2523 0 44.79 812.4 1602 1189 𝑦0(𝑘𝑚) 0.000 2890 0 60.04 1166 3772 7235 𝑧0(𝑘𝑚) 0.000 299.2 0 2.853 24.23 386.7 -2055 �̇�0(𝑘𝑚/𝑠) 0.002 -0.358 0 -0.023 -0.230 0.622 -0.252 �̇�0(𝑘𝑚/𝑠) 0.020 -4.393 0 -0.121 -1.728 -3.404 -2.587 �̇�0(𝑘𝑚/𝑠) 0.020 0.260 0 -0.037 -0.080 0.727 5.249 

* Determined orbit highlighted red 

 

Table 22 

Relative specific energy (𝑘𝑚2/𝑠2)* 

State A State B State C State D State E State F State G 

0.018 43898 0 4.427 275.7 73280 2127953 

* Determined orbit highlighted red 

 

Extended plots for the solution curve are shown in Figs. 61 through 66.  Values for 𝜆 

exceed ±104 such that development of linear or asymptotic type behavior can be observed on 

the figures.  As is the case for the planar orbit solution, asymptotes primarily appear as oblique 

with the exception of the 𝑥0 and �̇�0 solution curves which appear to approach vertical asymptotes 

in the – 𝜆 direction.  These asymptotes again imply existence of an infinite number of 𝜆 ≠ 0 

solutions to the relative motion equation set in the three-dimensional setting, but only seven 𝜆 =0 solutions were discovered. 
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Figure 61.  Extended solution curve for deputy 𝑥0 

 

 

Figure 62.  Extended solution curve for deputy 𝑦0 
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Figure 63.  Extended solution curve for deputy 𝑧0 

 

 

Figure 64.  Extended solution curve for deputy �̇�0 
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Figure 65.  Extended solution curve for deputy �̇�0 

 

 

Figure 66.  Extended solution curve for deputy �̇�0 
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 Plots of difference ratios using Eq. (57) for rows in the Jacobian matrix are shown in 

Figs. 67 and 68.  Plots cover what appear to be asymptotic regions of the extended solution 

curves and were constructed using a 𝛥𝜆 increment of approximately 100.  Similar to the planar 

orbit case, the space orbit case shows difference ratios for all rows of the Jacobian are seen to 

approach zero for continuously increasing or decreasing 𝜆. 

 

 

Figure 67.  Difference ratio for positive 𝜆 

 

λ 



www.manaraa.com

142 
 

 

Figure 68.  Difference ratio for negative 𝜆 

 

6.4 CONCLUSIONS 

 

 A numerical path following procedure based on the arc-length method was successfully 

applied to nonlinear equation sets for purpose of finding roots representing initial conditions for 

orbit determination.  The procedure was demonstrated to be more robust as compared to 

searching for individual roots as two additional roots were found for the planar orbit case.  The 

primary advantage of using arc-length solvers over other nonlinear solvers that treat the common 

scalar solution as known is the increased likelihood that some point or solution on a given 

solution curve will be found as compared to finding an individual root.  Once an arbitrary 

solution point is found, path following of the solution curve is performed to identify the 

associated roots.  Problems were thus transformed from searching for individual roots to 

searching for individual solution curves containing a finite number of roots.  The path following 

λ 
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procedure was terminated based on a proposed difference metric using the Jacobian matrix to 

identify the development of asymptotic or linear type behavior. 
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CHAPTER 7 

 

CONCLUSIONS AND FURTHER RESEARCH 

 

 Specific conclusions are contained in Chapters 3 through 6 to maintain consistency with 

previous or pending published work.  In Chapter 3, arc-length solvers were found to be more 

robust as compared to other parametrized nonlinear solvers in terms of minimizing restarts in the 

event of solver failure and provided for a broader range by which to search for solutions due to 

the parameter being treated as unknown.  In Chapter 4, arc-length solvers were used to construct 

static solution curves as part of a path following technique to identify the many possible 

equilibrium states for several mechanical systems.  A procedure was proposed for identification 

of true equilibrium providing for a more comprehensive methodology as compared to point 

solution methods currently found in commercial software.  In Chapter 5, a method for parallel 

processing of the Jacobian matrix using MATLAB was established and speedup was achieved in 

comparison to a serial version with underlying parallel operations on a shared memory PC.  In 

Chapter 6, a case study was performed where path following based on the arc-length method was 

used to identify roots in nonlinear systems used for initial relative orbit determination. 

 Recommended further research is to establish simple rules for stability assessment of 

physical systems using eigenvalues from differential and algebraic equation sets.  Such rules 

exist for ordinary differential equation sets as to where eigenvalues fall in a complex plane, but 

computational expense for conversion from DAE to ODE format can be significant.  Patterns of 

DAE eigenvalues for stable configurations were identified in Chapter 4 making such an 

investigation appear plausible.  Another recommendation is to develop a user friendly interface 
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making path following techniques for identification of equilibrium and solving of general 

systems of nonlinear equations more practical.  This enhancement is seen as a necessary step if 

such a procedure were ever adopted in commercial software.  Users should be able to easily plot 

selected variables and specify a range for the arc-length and unknown scalar parameter lambda 

needed to initialize the procedure.  Methods for varying arc-length, stopping, reversing, or 

restarting the solver during path following of solution curves should also be provided. 

  



www.manaraa.com

146 
 

BIBLIOGRAPHY 

 

[1] K. J. Bathe, Finite Element Procedures, Klaus-Jürgen Bathe, 2006. 

[2] R. D. Cook, D. S. Malkus, M. E. Plesha, R. J. Witt, Concepts and Applications of Finite 

Element Analysis, fourth ed., Wiley, 2002. 

[3] R. de Borst, M. A. Crisfield, J. J. C. Remmers, C. V. Verhoosel, Non-linear Finite Element 

Analysis of Solids and Structures, second ed., Wiley, 2012. 

[4] A. Shabana, Computational Dynamics, third ed., Wiley, 2010. 

[5] A. Shabana, Dynamics of Multibody Systems, fourth ed., Cambridge University Press, 

2013. 

[6] O. Bauchau, Flexible Multibody Dynamics (Solid Mechanics and Its Applications), 

Springer, 2011. 

[7] J. Nocedal, S. Wright, Numerical Optimization, second ed., Springer, 2006. 

[8] C. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995. 

[9] Abaqus Analysis Users Guide, Dassault Systèmes Simulia Corp., 2014. 

[10] ANSYS Mechanical APDL Theory Reference, ANSYS, Inc., 2013. 

[11] MSC Nastran Nonlinear User’s Guide (SOL 400), MSC Software Corporation, 2016. 

[12] About ADAMS Solver, MSC Software Corporation, 2016. 

[13] RecurDyn / Solver Theoretical Manual, FunctionBay, Inc., 2012. 

[14] A. R. Conn, N. I. M. Gould, P. L. Toint, Trust-Region Methods, SIAM, 2000. 

[15] MATLAB R2015b Documentation, The MathWorks, Inc., 2015. 

[16] C. G. Broyden, The convergence of a class of double-rank minimization algorithms, J. Inst. 

Math. Appl. 6 (1970) 76-90. 

[17] R. Fletcher, A new approach to variable metric algorithms, Comp. J. 13 (1970) 317-322. 

[18] D. Goldfarb, A family of variable metric updates derived by variational means, Math. 

Comp. 24 (1970) 23-26. 

[19] D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. 

Comp. 24 (1970) 647-656. 

[20] L. Komzsik, What Every Engineer Should Know About Computational Techniques of 

Finite Element Analysis, first ed., CRC Press, 2005. 



www.manaraa.com

147 
 

[21] R. B. Schnabel, P. D. Frank, Tensor methods for nonlinear equations, J. Numer. Anal., 21, 

(1984) 815-843. 

[22] A. Bouaricha, R. B. Schnabel, Tensor methods for large sparse systems of nonlinear 

equations, J. Math. Progr., 82 (1998) 377-400. 

[23] A. Bouaricha, Tensor-Krylov methods for large nonlinear equations, J. Comput. Optim. 

Appl., 5 (1996) 207-232. 

[24] B. W. Bader, Tensor-Krylov methods for solving large-scale systems of nonlinear 

equations, in: Sandia Report SAND2004-1837, 2004. 

[25] A. Krylov, Professor Krylov's Navy: Memoir of a Naval Architect, Magnet Publishing, 

2014. 

[26] M. Hestenes, E. Steifel, Methods of conjugate gradient for solving linear systems, J. Res. 

Natl. Bur. Stand., 49 (1952) 409-436. 

[27] Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm for solving 

nonsymmetric linear systems, J. Sci. Stat. Comp., 7 (1986) 856-869. 

[28] Y. Saad, Iterative Methods for Sparse Linear Systems, second ed., SIAM, 2003. 

[29] E. Riks, The application of newton’s method to the problem of elastic stability, J. Appl. 

Mech., 39 (1972), 1060-1066. 

[30] G. A. Wempner, Discrete approximations related to nonlinear theories of solids, Int. J. 

Solids Struct. 7 (1971) 1581-1599. 

[31] M. A. Crisfield, A fast incremental / iterative solution procedure that handles snap-through, 

Comput. Struct. 13 (1981) 55-62. 

[32] E. Ramm, Strategies for tracing the nonlinear response near limit points, in: Proceedings of 

the Europe-U.S. Workshop on Nonlinear Finite Element Analysis in Structural Mechanics, 

1981. 

[33] M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures, Volume 1: 

Essentials, Wiley, 1991. 

[34] M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures, Volume 2: 

Advanced Topics, Wiley, 1997. 

[35] Nonlinear finite element methods, course notes for ASEN 6107, 

http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/Home.html, (accessed 

03.17.2017). 

http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/Home.html


www.manaraa.com

148 
 

[36] K. J. Bathe, E. Dvorkin, On the automatic solution of nonlinear finite element equations, 

Comput. Struct., 17 (1983) 871-879. 

[37] E. L. Allgower, K. Georg, Numerical Continuation Methods: An Introduction, Springer 

Series in Computational Mathematics, Vol. 13, Springer Berlin Heidelberg, 1990. 

[38] E. L. Allgower, K. Georg, Numerical Path Following, Handbook of Numerical Analysis, 

Vol. V,  Techniques of Scientific Computing (Part 2),  Elsevier Science, 1997. 

[39] B. Barney, Introduction to Parallel Computing, Lawrence Livermore National Laboratory, 

2016. https://computing.llnl.gov/tutorials/parallel_comp/, (accessed 02.06.17). 

[40] OpenMP, http://www.openmp.org/, (accessed 03.22.2017). 

[41] MPI Forum, http://mpi-forum.org/, (accessed 03.22.2017). 

[42] F. Darema, SPMD Computational Model, Encyclopedia of Parallel Computing, 2011, pp. 

1933-1943. 

[43] A. Grama, G. Karypis, V. Kumar, A. Gupta, Introduction to Parallel Computing, second 

ed., Pearson, 2003. 

[44] N. Matloff, Programming on Parallel Machines, University of California, Davis, 2016, 

http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf, (accessed 02.06.17). 

[45] E. Riks, An incremental approach to the solution of snapping and buckling problems, Int. J. 

Solids Struct., 15 (1979) 529-551. 

[46] E. Riks, Some computational aspects of the stability analysis of nonlinear structures, Comp. 

Meth. Appl. Mech. Eng., 47 (1984) 219-259. 

[47] G. Powell, J. Simons, Improved iterative strategy for nonlinear structures, Int. J. Numer. 

Meth. Eng., 17 (1981) 1455-1467. 

[48] MATLAB Parallel Computing Toolbox Tutorial, 

http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/matlab-pct/, 

(accessed 02.06.17). 

[49] C. Moler, Parallel MATLAB: Multiple processors and multiple cores, MathWorks, 2007, 

https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-

processors-and-multiple-cores.html, (accessed 02.06.17). 

[50] MATLAB Answers, http://www.mathworks.com/matlabcentral/answers/95958-which-

matlab-functions-benefit-from-multithreaded-computation, (accessed 02.06.17). 

http://www.openmp.org/
http://mpi-forum.org/
http://www.bu.edu/tech/support/research/training-consulting/online-tutorials/matlab-pct/
https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-and-multiple-cores.html
https://www.mathworks.com/company/newsletters/articles/parallel-matlab-multiple-processors-and-multiple-cores.html
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation


www.manaraa.com

149 
 

[51] G. Rose, D. Nguyen, B. Newman, Implementing an arc-length method for a robust 

approach in solving systems of nonlinear equations, in: IEEE Southeast Conference, 2016. 

[52] L. Meirovitch, Methods of Analytical Dynamics, Dover Publications Inc., 2003. 

[53] D. Negrut, A. Dyer, ADAMS/Solver Primer, MSC Software Corporation, 2004. 

[54] U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equations and 

Differential-Algebraic Equations, SIAM, 1998. 

[55] L. Meirovitch, Fundamentals of Vibrations, McGraw-Hill, 2001. 

[56] M. Menrath, Stability criteria for nonlinear fully implicit differential-algebraic systems, 

PhD Dissertation, University in Cologne, Germany, 2011. 

[57] D. Negrut, J. Ortiz, On an Approach for the Linearization of the Differential Algebraic 

Equations of Multibody Dynamics, in: Proceedings of the ASME/IEEE International 

Conference on Mechatronic and Embedded Systems and Applications, 2005. 

[58] G. Rose, D. Nguyen, B. Newman, Parallel Computation of the Jacobian Matrix for 

Nonlinear Equation Solvers Using MATLAB, NASA/TM-2017-219655, 2017. 

[59] J. Ortiz, Introduction to Adams/Solver C++, Charts from the 2011 Adams user meeting, 

Munich, Germany, 2011. 

[60] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in Fortran 77: The 

Art of Scientific Computing, second ed., Press Syndicate of the University of Cambridge,  

1997. 

[61] R. Neidinger, Introduction to automatic differentiation and MATLAB object-oriented 

programming, SIAM Review, Vol. 52, No. 3, (2010) 545-563. 

[62] R. Bartlett, D. Gay, E. Phipps, Automatic differentiation of C++ codes for large-scale 

scientific computing, in: International Conference on Computational Science, 2006, pp. 

525-532. 

[63] ADIFOR, http://www.anl.gov/technology/project/adifor-automatic-differentiation-fortran-

77, (accessed 02.06.17). 

[64] J. Gilbert, C. Moler, R. Schreiber, Sparse matrices in MATLAB: Design and 

implementation, J. Matrix Anal. Appl. 13 (1992) 333-356. 

[65] P.R. Escobal, Methods of Orbit Determination, John Wiley & Sons, 1965. 

[66] B. Newman, T.A. Lovell, E. Pratt, Second order nonlinear initial orbit determination for 

relative motion using Volterra theory, Adv. Astronaut. Sci., 152 (2014) 1253-1272. 

http://www.anl.gov/technology/project/adifor-automatic-differentiation-fortran-77
http://www.anl.gov/technology/project/adifor-automatic-differentiation-fortran-77


www.manaraa.com

150 
 

[67] M.T. Stringer, B. Newman, T.A. Lovell, A. Omran, Analysis of a new nonlinear solution of 

relative orbital motion, Proceedings of the 23rd International Symposium on Space Flight 

Dynamics, 2012. 

[68] B. Newman, T.A. Lovell, E. Pratt, E. Duncan, Quadratic hexa-dimensional solution for 

relative orbit determination - revisited, Adv. Astronaut. Sci., 155 (2015) 3359-3376. 

  



www.manaraa.com

151 
 

APPENDIX A 

MATLAB CODE FOR NEWTON-RAPHSON METHOD 

 

function [u] = newton(u_0,lambda) % Newton-Raphson method 
 
u_i   = u_0;                      % initial guess 
conv  = 0;                        % convergence criteria, 1 = yes, 0 = no 
iter  = 0;                        % starting iteration count 
 
    while conv == 0               % iteration starts to determine new u 
 
        [K_i,fu_i,F]   = sys_eq(u_i);     % system data for displacement u_i 
        R_i            = lambda*F - fu_i; % imbalance at state (i) 
        du_i           = (K_i)\R_i;       % du_i = inv(K_i)*R_i; 
 
        if norm(du_i)/norm(u_i) < 1.0e-8 
            conv = 1;             % converged 
        elseif iter > 50          % set iteration limit 
            break; 
        else 
            u_i  = u_i + du_i; 
            iter = iter + 1; 
        end 
         
    end 
 
if conv == 1                      % converged 
    u = u_i;                      % new equilibrium displacement 
else 
    [row,col] = size(u_i); 
    u = NaN*ones(row,col);        % NaN for convergence failure 
end 
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APPENDIX B 

MATLAB CODE FOR ARC-LENGTH METHODS 

 

function [u,lambda] = arclength(arcL,u_0,lambda_0,method) 
 
% Arc-length method 
% arcL     - user specified arc-length 
% u_0      - guessed or initial state 
% lambda_0 - guessed or initial parameter 
 
[K_0,~,F] = sys_eq(u_0);  % output system data for point u_0 
 
[row,col]    = size(u_0); 
 
%% find starting iteration point at end of arc-length 
 
detK_0       = det(K_0);                % matrix determinant 
del_lambda_g = sign(detK_0);            % +/- slope for arc-length 
du_g         = K_0\(del_lambda_g*F);    % du_g = inv(K_0)*del_lambda_g*F; 
arcL_g       = sqrt(del_lambda_g^2 + du_g'*du_g); 
del_lambda_0 = (arcL/arcL_g)*del_lambda_g; 
du_0         = (arcL/arcL_g)*du_g; 
lambda_i     = lambda_0 + del_lambda_0; % lambda at end of arc-length        
u_i          = u_0 + du_0;              % u at end of arc-length 
r_i          = [du_0; del_lambda_0];    % store vector defining arc-length 
L_squared    = r_i'*r_i;                % arc-length magnitude 
 
%% begin iterations to determine equilibrium point 
 
conv = 0;                               % convergence criteria  
iter = 1;                               % starting iteration count 
 
while conv == 0 
 
    r_p          = r_i;                 % previous vector for arc-length 
    [K_i,fu_i,F] = sys_eq(u_i);         % output system data for point u_i 
    R_i          = lambda_i*F - fu_i;   % imbalance at state (i) 
    du_I         = K_i\F;               % du_I  = inv(K_i)*F; 
    du_II        = K_i\R_i;             % du_II = inv(K_i)*R_i; 
     
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
if method == 1                  % spherical iteration path 
     
    c(1)         = 1 + du_I'*du_I; 
    c(2)         = 2*(r_p(row + 1) + r_p(1:row)'*du_I + du_I'*du_II); 
    c(3)         = 2*r_p(1:row)'*du_II + du_II'*du_II; 
    del_lambda_t = roots(c); 
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    if isreal(del_lambda_t) == 0 
        del_lambda_t = real(del_lambda_t); % use with caution 
        fprintf('Complex roots for iteration %g\n',iter) 
    end 
    du_t1        = du_II + del_lambda_t(1)*du_I; 
    du_t2        = du_II + del_lambda_t(2)*du_I; 
    r_t1         = r_p + [du_t1; del_lambda_t(1)]; 
    r_t2         = r_p + [du_t2; del_lambda_t(2)]; 
    cos_theta1   = (r_p'*r_t1)/L_squared; 
    cos_theta2   = (r_p'*r_t2)/L_squared; 
 
    if cos_theta1 > cos_theta2 
        dui         = du_t1; 
        del_lambdai = del_lambda_t(1); 
    else 
        dui         = du_t2; 
        del_lambdai = del_lambda_t(2); 
    end 
     
    du_i         = dui; 
    del_lambda_i = del_lambdai; 
    r_i          = r_p + [du_i; del_lambda_i]; % updated vector 
 
elseif method == 2              % normal iteration path 
     
    del_lambda_i = -(du_0'*du_II)/(du_0'*du_I + del_lambda_0);   
    du_i         = du_I * del_lambda_i + du_II; 
 
end 
 
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    if norm(du_i)/norm(u_i) < 1.0e-6 || abs(del_lambda_i)/abs(lambda_i) < 
1.0e-6 
        conv     = 1;           % converged 
    elseif iter > 100 
        break;                  % exit loop for specified iteration limit 
    else 
        u_i      = u_i + du_i; 
        lambda_i = lambda_i + del_lambda_i; 
        iter     = iter + 1; 
    end 
     
end 
 
if conv == 1                    % converged 
    u      = u_i;               % new equilibrium displacement 
    lambda = lambda_i;          % new equilibrium load factor 
    %R_i 
else 
    u      = NaN*ones(row,col); % NaN for convergence failure 
    lambda = NaN; 
end 
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APPENDIX C 

MATLAB CODE FOR SOLVING A NONLINEAR SYSTEM 

 

% Sample code for solving nonlinear system of equations 
% USER INPUT: 3DOF example 
 
dlambda = 1;          % search increment for RHS solution 
u       = [2;-2;2];   % initial guess or known state 
lambda  = 0;          % initial guess or known RHS solution 
N       = 5;          % search limit 
 
figure(1); hold on; xlabel('u1'); ylabel('lambda'); 
figure(2); hold on; xlabel('u2'); ylabel('lambda'); 
figure(3); hold on; xlabel('u3'); ylabel('lambda'); 
 
%% Implement Newton-Raphson method 
 
for i = 1:N 
    lambda = lambda + dlambda;      % next value for parameter 
    u_0 = u;                        % initial guess for displacement 
    [u] = newton(u_0, lambda); 
    if isnan(u) == 1 
        disp('Convergence failure, switching to arc-length') 
        break; 
    elseif isreal(u) == 0 
        disp('Complex root, switching to arc-length') 
        break; 
    end 
    figure(1); plot(u(1),lambda,'ro'); % plot point 
    figure(2); plot(u(2),lambda,'ro'); % plot point 
    figure(3); plot(u(3),lambda,'ro'); % plot point 
end 
 
u = u_0;                         % final state obtained from NR method 
lambda = lambda - dlambda;       % final RHS solution from NR method 
 
%% Implement the arc-length method 
method = 1;           % 1 - sphere, 2 - plane 
arcL   = 0.5;         % specified arc-length to follow solution curve 
N      = 200; 
 
if method == 1 
    disp('Perform arclength on sphere') 
elseif method == 2 
    disp('Perform arc-length on normal plane') 
end 
 
u_0 = u;             % guess based on previous state 
lambda_0 = lambda;   % guess based on previous RHS 
[u,lambda] = arclength(arcL,u_0,lambda_0,method); 
%arcL = -arcL;       % uncomment and re-run to follow opposite direction 
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iter = 0; 
for i = 1:N 
    iter = iter + 1; 
    u_0 = u;             % guess based on previous state 
    lambda_0 = lambda;   % guess based on previous RHS 
    [u,lambda] = arclength(arcL,u_0,lambda_0,method); 
    if sign(lambda) ~= sign(lambda_0) 
        u_zero = newton(u_0, 0) % perform NR at zero-crossings 
    end 
    figure(1); plot(u(1),lambda,'ro'); % plot point 
    figure(2); plot(u(2),lambda,'ro'); % plot point 
    figure(3); plot(u(3),lambda,'ro'); % plot point 
end 
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APPENDIX D 

MATLAB CODE FOR DEFINING A NONLINEAR SYSTEM 

 

function [K,fu,F] = sys_eq(u) % Define system of nonlinear equations 
% System can be general or based on finite element model. K is tangent 
% stiffness or Jacobian matrix. This is the slope of tangent hyperplane at 
% displacement u. fu is system value at state u. F is a reference vector  
% for scalar lambda. 
 
% 3DOF example 
 
K = zeros(3,3); 
 
K(1,1) = 2*u(1)*(u(2)^3)*u(3); 
K(1,2) = 3*(u(2)^2)*(u(1)^2)*u(3) + 4; 
K(1,3) = 0.5*(u(3)^-0.5) + (u(1)^2)*(u(2)^3) - (u(3)^-2); 
K(2,1) = (u(3)^3) + 3; 
K(2,2) = 0.5*((-u(3)*u(2))^-0.5)*(-u(3)) + 2*(u(2)^-3); 
K(2,3) = 0.5*((-u(3)*u(2))^-0.5)*(-u(2)) + 3*(u(3)^2)*u(1); 
K(3,1) = u(2)*u(3) + 2*u(1)*u(3) - 3*u(2); 
K(3,2) = u(1)*u(3) + 2*u(2)*u(3) -3*u(1); 
K(3,3) = u(1)*u(2) + (u(2)^2) + (u(1)^2); 
 
fu = zeros(3,1); 
 
fu(1) = (u(3)^0.5) + (u(1)^2)*(u(2)^3)*u(3) + (u(3)^-1) + 4*u(2) + 17.75; 
fu(2) = ((-u(3)*u(2))^0.5) + (u(3)^3)*u(1) - (u(2)^-2) + 3*u(1) - 135; 
fu(3) = u(1)*u(2)*u(3) + (u(2)^2)*u(3) + (u(1)^2)*u(3) - 3*u(1)*u(2) -18; 
 
F = [1;1;1]; 
  



www.manaraa.com

157 
 

APPENDIX E 

MATLAB CODE FOR PARALLEL JACOBIAN COMPUTATION 

 

function J = par_jacobi_a(u_i,NP) 
 
N = size(u_i,1); 
C = ceil(N/NP); 
index = ones(1,2*NP); 
index(end) = N; 
j = 2; 
 
for i =1:NP-1  
    index(j) = i*C; 
    index(j+1) = index(j) + 1; 
    if index(j) > N 
        fprintf('invlid matrix partition of %g for NP = %g\n',index(j),NP) 
        return 
    elseif index(j+1) > N 
        fprintf('invlid matrix partition of %g for NP = %g\n',index(j+1),NP) 
        return 
    end 
    j = j + 2; 
end 
del = 1e-6; 
 
spmd 
    J = zeros(N,C); % distribute partitions across labs 
    uperturb = u_i; 
    fu_i = sys_eq(u_i); 
 
    for j = 1:NP 
        if labindex == j 
            for i = index(j*2-1):index(j*2) 
                uperturb(i) = uperturb(i) + del; 
                fu_p = sys_eq(uperturb); 
                if j == 1 
                    J(:,i) = ( fu_p - fu_i )/del; 
                else 
                    k = 2*labindex - 2; 
                    J(:,i - index(k)) = ( fu_p - fu_i )/del; 
                end 
                uperturb(i) = u_i(i); %uperturb(i) - del; 
            end 
        end 
    end 
end 
 
J = [J{1:NP}]; % convert from composite to double 
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APPENDIX F 

COPYRIGHTS 

 

Chapter 3 subject to ©2016 IEEE. Reprinted, with permission, from G. Rose, D. Nguyen, B. 

Newman, “Implementing an Arc-Length Method for a Robust Approach in Solving Systems of 

Nonlinear Equations,” Proceedings of the 2016 IEEE Southeast Conference, Norfolk, Virginia 

(March 30 – April 3, 2016). 

 

A unique and expanded version of Chapter 4 has been accepted for publication under DOI: 

10.1007/s11044-018-9618-7, "A path following method for identifying static equilibrium in 
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